
Da Vinci Assembler

Framework

Paolo Roberti

© 2021-2023 Roberti & Parau Enterprise, Inc.

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative
Commons, PO Box 1866, Mountain View, CA 94042, USA.

DVASM� is a trademark of Roberti & Parau Enterprises, Inc.

Page: ii

http://creativecommons.org/licenses/by-nc-nd/4.0/

Contents

1 Overview . 1

2 Introduction . 3
2.1 DVASM� functionality . 3
2.2 File structure . 3
2.3 Installation . 5
2.4 Executing DVASM� . 6

3 The Input File . 9
3.1 Input File Syntax . 9
3.2 Label . 10
3.3 Opcode . 10
3.4 Parameters . 10
3.5 Comments . 11

4 Sections and Symbols . 13
4.1 Sections . 15
4.2 MMAPs . 15
4.3 Symbols . 16
4.4 External Symbols . 16

5 Expressions . 19
5.1 Constants . 19
5.2 Symbols . 20
5.3 Operators . 21

5.3.1 Operator Precedence . 22
5.3.2 Operators and Operands Types . 23

5.4 Relocation Qualifier Restrictions . 31
5.5 Examples . 31

5.5.1 Absolute Integers . 31
5.5.2 Displacement Integers . 32

Page: iii

5.5.3 Base Displacement Integers . 33
5.5.4 Floating Point . 34
5.5.5 Strings . 35

6 ELF Output Files . 37
6.1 ABI . 37
6.2 Relocatables . 38

7 Framework Data Opcodes and Directives . 41
7.1 Data Opcodes . 41

7.1.1 Word Data Opcodes . 42
7.1.2 Word Data Opcode Examples . 44
7.1.3 Unicode Data Opcodes . 45
7.1.4 Unicode Data Opcode Examples . 45

7.2 Control Directives . 47
7.2.1 ASSERT Directive . 47
7.2.2 BASECLEAR Directive . 48
7.2.3 BASEDROP Directive . 49
7.2.4 BASESET Directive . 50
7.2.5 BIGENDIAN Directive . 53
7.2.6 CNTRES Directive . 54
7.2.7 CNTSET Directive . 55
7.2.8 COMMON Directive . 57
7.2.9 DEFENDIAN Directive . 59
7.2.10 END Directive . 61
7.2.11 EQU Directive . 62
7.2.12 EXPORT Directive . 63
7.2.13 EXTERNAL Directive . 65
7.2.14 LITTLEENDIAN Directive . 67
7.2.15 MMAP Directive . 68
7.2.16 SECTION Directive . 69
7.2.17 SETENV Directive . 71
7.2.18 SETFILE Directive . 73

8 Macro Processor . 75
8.1 A simple example . 76

8.1.1 The Header . 77
8.1.2 The Code . 77

8.2 The Header . 79
8.2.1 Header Format . 79

Page: iv

CONTENTS Page: v

8.2.2 Header Parameters . 79
8.3 Invoking a Macro . 82
8.4 Execution Environment . 84

8.4.1 DVASM� Macro Functions . 85
8.4.2 Generating Code . 92
8.4.3 Concatenation of JavaScript® variables in template lines 93

9 Output Listing . 95
9.1 Header . 96
9.2 General Information Section . 97
9.3 Source Code Listing . 97
9.4 Sections . 97
9.5 Symbols . 98
9.6 Relocations . 98

A Summary of Case Sensitive Rules . 99

Chapter 1

Overview

The Da Vinci Assembler or DVASM� is a set of Java® modules that implements a
multi-architecture assembler framework.

DVASM� has been written specifically to be used by programmers to be able to efficiently
write large systems, such as a whole OS kernel, and easily maintain them. Great attention
has been given to directives, support of a powerful macro environment, and a very detailed
and informative output listing.

Any computer architecture can be supported by the DVASM� by writing a compatible
module that complements the framework module to support the target architecture.

This is a reference manual that describe the DVASM� part that is architecture
independent. For each architecture supported, now or in the future, a separate manual
will be provided.

Page: 2

Chapter 2

Introduction

2.1 DVASM� functionality

DVASM� framework has been designed to support any number of computer architectures.
Any computer architecture that satisfies the following conditions can be supported by the
DVASM� framework by coding an architecture Java® module:

� Storage addressing is by octets or eight bit bytes;

� Machine instructions are on an octet boundary and their length a multiple of octets;

Both Von Neuman and Harvard architectures are supported, as well as architectures with
or without registers such as stack machines.

2.2 File structure

DVASM� is delivered as a single Java® JAR file. This file contains the framework module,
and any module of currently supported computer architectures, with their associated
macros. If the user needs any architecture or architectural extension not currently
supported by the DVASM� JAR file, a module can be written in Java® and used as an
external module. The file structure of any external module, and its associated macros,
must follow precise rules in the layout of the file structure, so that it can correctly interact
with the framework module.

Page: 4

The file structure inside any DVASM� JAR file is always the same and is as follows:

/framework Directory containing all Java® classes for the framework
module (main DVASM� JAR file only).

/framework/macros Directory containing macros that are architecture independent
(main DVASM� JAR file only).

/arch/ARCH_NAME Directory containing all Java® classes for the ARCH_NAME
architecture module. Any architecture name must be upper
case.

/arch/ARCH_NAME/macros
Directory containing all macros for the ARCH_NAME
architecture module.

/arch/ARCH_NAME/ext/EXT_NAME
Directory containing all Java® classes for the the extension
EXT_NAME module for architecture ARCH_NAME. Any
extension name must be upper case.

/arch/ARCH_NAME/ext/EXT_NAME/macros
Directory containing all macros for the the extension
EXT_NAME module for architecture ARCH_NAME.

If Java® classes and macros that support a new architecture or extension are organized
in a separate JAR file, the JAR file structure is the same as the framework DVASM� file
structure without the framework directory and its sub-directories.

Chapter 2: Introduction Page: 5

If Java® classes and macros that support a new architecture or extension are organized
as a set of directories instead of a JAR file, the directories must be organized exactly the
same way, under a single main directory in the OS file system as follows:

.../main_dir/arch/ARCH_NAME
Directory containing all Java® classes for the ARCH_NAME
architecture module. Any architecture name must be upper
case.

.../main_dir/arch/ARCH_NAME/macros
Directory containing all macros for the ARCH_NAME
architecture module.

.../main_dir/arch/ARCH_NAME/ext/EXT_NAME
Directory containing all Java® classes for the the extension
EXT_NAME module for architecture ARCH_NAME. Any
extension name must be upper case.

.../main_dir/arch/ARCH_NAME/ext/EXT_NAME/macros
Directory containing all macros for the the extension
EXT_NAME module for architecture ARCH_NAME.

2.3 Installation

DVASM� has been entirely coded in Java® and requires the installation
of GraalVM® community edition. It can be used on any OS
that is supported by GraalVM® . You can download GraalVM® from
https://github.com/graalvm/graalvm-ce-builds/releases/tag/vm-21.0.0 Make
sure that you select Java® 11, or higher, based version. After downloading, unzip/untar
the downloaded file and follow the installation instructions.

After GrallVM has been installed, change your PATH so that Java® installed with
GraalVM® becomes the default Java® used in the system.

Next download DVASM� JAR file from https://www.dvasm.com/downloads and copy the
JAR file to any suitable location on your system.

https://github.com/graalvm/graalvm-ce-builds/releases/tag/vm-21.0.0
https://www.dvasm.com/downloads

Page: 6

2.4 Executing DVASM�

DVASM� is invoked with the following command:

java -jar jar_file_name \
[-i input_dir_name] \
[-o output_dir_name] \
[-l listing_dir_name] \
[-m macro_dir_name ... -m macro_dir_name] \
[-a arch_dir_or_jar_file_name] \
[-x arch_ext_dir_or_jar_file_name] \
input_file_name input_file_name

Command options must follow jar_file_name and precede input_file_name(s) and
they can be in any order.

jar_file_name Name of the main DVASM� JAR file that contains the
framework module.

input_dir_name Name of the directory containing the input file(s). It is optional
and when not specified it defaults to the current directory. It
applies only when an input_file_name is not a full path
name.

output_dir_name Name of the directory where DVASM� writes the output binary
file(s) in ELF format. It is optional and it defaults to the
input_dir_name.

listing_dir_name Name of the directory where DVASM� writes the assembly
listing file(s) in HTML format. It is optional and it defaults
to the output_dir_name

macro_dir_name Name of one or more directories where DVASM� searches for
macros. They are optional and when not specified search is
defaulted to the input_dir_name. DVASM� always searches
for a macro in the macro_dir_names directories, in the order
they are specified, before searching in extension, architecture,
and framework macro directories in this specific order.

arch_dir_or_jar_file_name
Name of the main directory or JAR file containing the
architecture module. It is optional and it defaults to
jar_file_name.

Chapter 2: Introduction Page: 7

arch_ext_dir_or_jar_file_name
Name of the main directory or JAR file containing the
architecture extension module. It is optional and it defaults
to arch_dir_or_jar_file_name.

One or more input files are specified, all with file extension .asm. Output ELF files are
named after the corresponding input file names with file extension .o. Listing HTML files
are named after the corresponding input file names with file extension .html.

Page: 8

Chapter 3

The Input File

An assembler programmer writes his/her code into an input file which is processed by
DVASM� to produce an object code in ELF format and an output listing in HTML format.
In this chapter we will describe the syntax of DVASM� input file.

3.1 Input File Syntax

An assembler program is composed of statements. Each statement is composed by:

Label A label represent a symbol that is used to ’label’ the statements
so that it can be referenced by other statements or itself. It is
optional.

Opcode The opcode represents either a directive to the assembler,
a machine instruction or a macro. The opcode is always
required.

Parameters Zero or more parameters for the opcode.

Comments Comments are optional and can be specified at the end of each
line.

Here is an example of a single statement:

Lbl001 MV R4,R7 // Copy content of register 7 to register 4

Page: 10

where Lbl001 is the label, MV is the opcode, R4,R7 are two opcode parameters and
// Copy content of register 7 to register 4 is a comment.

3.2 Label

Labels must start on the first character of a line. If the first character is a space
DVASM� assumes that there is no label. A label can be coded as one or more words
separated by dots (i.e. ’.’). Each word must start with a alphabetic character or the
underscore character (i.e. ’_’) followed by zero or more alphanumeric characters or the
underscore characters. The regular expression for labels is:

[a-z,A-Z,_][a-z,A-Z,_,0-9]*([\.][a-z,A-Z,_][a-z,A-Z,_,0-9]*)*

Labels are case insensitive.

3.3 Opcode

Opcodes share the same lexical rules used for labels, and in fact share the same regular
expression. Opcodes are always case insensitive.

3.4 Parameters

Parameters syntax rules are different for macro opcodes and non-macro opcodes. Here we
give the general rules on how to code non-macro parameters.

There are two type of parameters: positional and key-word parameters. All parameters are
comma separated.

Positional parameters are composed of a single expression followed by zero or more
sub-parameters. Each sub-parameter is also composed by a single expression. The list
of positional sub-parameters is enclosed by square brackets and is comma separated. For
example a positional parameter with two sub-parameters is coded as follows:

expression [expression, expression]

Chapter 3: The Input File Page: 11

A positional parameter without sub-parameters is coded as follows:

expression

Opcode ADDI with two positional parameters, the first with no sub-parameters and the
second with one subparameter is coded as follows:

Lblb01 ADDI R1, 256-64 [R2]

Expressions can be mathematical or string expressions, whose result can be an integer,
with different attributes, a floating point number or a string. Expressions are described at
length on page 19.

Key-word parameters are composed by a key-word followed by the equal character ’=’
followed by an expression. There are no sub-parameters for key-word parameters. Key
word parameters can be positioned anywhere in the parameter list and do not affect the
position number of positional parameters. For example key-word parameter Cond= is coded
as follows:

Cond= expression

Opcode LD, with two positional parameters, the second with one sub-parameter, and one
keyword parameter can be coded in the following different ways with the same end result:

Aaa001 LD R2, 128-32[R8], Cond= yes
//
Aaa002 LD Cond= yes, R2, 128-32[R8]
//
Aaa003 LD R2, Cond= yes, 128-32[R8]

Key-word parameters are intended to be used when a parameter is expected to be set, most
of the time, to a default value, and only occasionally to a non-default value. In these
cases, the use of key-word parameters will save typing to the coder and provide better
readability of the source code.

3.5 Comments

There are two types of comments: single line or last line comments, and continuation
comments. Single line comments are started with the ’//’ sequence as in C and C++.
In multiple lines statements this type of comment can only be used in the last line of
the statement. In all other lines comments are started with ’/>’ sequence and they also

Page: 12

indicate that the statement continues in the next line. As such, continuation comments
are required when multiple line statements are used, even when an actual comment is not
needed. Here is how a statement can be written on one line or multiple lines:

Lbl001 MV R4,R7 // Copy content of register 7 to register 4
//
Lbl002 MV /> Label and opcode on this line only

R4,R7 // Copy content of register 7 to register 4
//
Lbl003 /> Label only on this line

MV /> opcode only on this line
R4,R7 // Copy content of register 7 to register 4

It is important to remember that the first character of any line that is not the first line of
a statement must be a blank space.

In addition to statements DVASM� input file can contain blank lines and lines containing
only comments.

Chapter 4

Sections and Symbols

When DVASM� reads the input file, it generates binary data consisting of machine
instructions encoded in binary form or data constants when the opcode is a data opcode.
The binary data is organized in sections. These sections are added to an ELF object file
that DVASM� generates as output.

DVASM� can generate binary data for machine instructions and data constants only after
a section has been started. Any attempt to do so before starting a section will result in an
error.

As the assembler reads opcodes that generate binary data (i.e. machine instructions or
constants), it places the binary data generated in sequential order inside the active section.
The total length, in bytes, of data already placed in the section is the location or offset of
the binary data generated by the next statement. This is equivalent to say that the offset
of the next opcode is equal to the offset of the current statement plus its length.

Page: 14

When a label is specified for a machine instruction or constant, the label name defines a
symbol. Symbols have three attributes:

Value For machine instruction and constant statements it is the
statement offset. When defined with EQU directive, it can be
integer of several types, a floating point number or a string
(see expressions on page 19).

Length For machine instructions and constants it is the length of the
binary data generated. When generating an array of constants
it is the length of a single data item in the array. When defined
with the EQU directive, its value is zero.

Replication factor Replication factor is always 1 except when defining an array
of constants, in which case it is the size of the array.

Here is an example of a section that contains both machine instructions ,constants, and
several symbols:

// Sample function that add three integers
// Registers 10, 11, 12 are parameter registers
// Register 10 contains the value returned
//

SETENV "RISCV", /> RISCV architecture
"RV64I:a,c,d,m,n,zicsr,zifencei", />
"LP64D", "linux"

//
FrameworkDef // Standard framework definitions

//
EXPORT Add3 // Export Add3 ENTRY symbol

//
Code SECTION ELF_SHT_PROGBITS, /> Section for binary code

ELF_SHF_ALLOC+ />
ELF_SHF_EXECINSTR, />
8, ".text" // Alignment 8, external name ’.text’

//
UTF_8 "Add3--->" // Define eye catcher

//
Add3 ADD 10, 11 // Add second parameter to first

ADD 10, 12 // Add third parameter to first
//
Exit JALR 0, 0[1] // Return to caller via link register 1
//

END

Chapter 4: Sections and Symbols Page: 15

In the code above, these are the symbols defined:

Code This symbol defines the beginning of the section used. As such
it has an offset value of zero and a length of zero, since no data
is generated.

Add3 Symbol Add3 defines the function entry and it is exported.
Since it lays after the eye catcher which is 8 bytes long it
has offset value of 8 and length of 4 which is the length of the
machine instruction ADD.

Exit Symbol Exit has offset value of 16, which is the offset value of
symbol Add3 plus the length of the two machine instructions
that follow Add3. It also has a length of 4 which is the length
of machine instruction JALR.

4.1 Sections

A section is started with the SECTION directive. More than one section can be specified
in an input file. The SECTION directive terminates the current section, if any, and starts
a new one. Sections have an internal name and an optional external name. When an
external name is not used, the internal name is used externally, after upper casing. When
specifying multiple section the external name can be reused multiple times, however the
internal name must be unique.

Sections have attributes. DVASM� allows programmers to specify all attributes supported
by ELF object files.

4.2 MMAPs

MMAP stands for "memory map" and it is a section that does not generate any binary code.
It is used to map a memory structure so that items in the structure can be addressed
symbolically. When DVASM� encounter the MMAP opcode the current SECTION or MMAP is
terminated and the new MMAP is started. For those who are familiar with C language,
MMAP is similar to a C structure defined using typedef.

Page: 16

4.3 Symbols

Symbols are always defined as labels in a statement. Symbols have a unique name and
cannot be redefined. Also, symbols can be used as part of an expression.

When symbols are defined as labels of a statement with an opcode, they have an attribute
of offset integer with length equal to the length of binary code generated for the statement
and replication of 1 unless a different replication factor is specified. In this case symbols
are associated to the SECTION or MMAP currently active for the statement.

When symbols are defined as labels of statements using the EQU directive, it can have
other attributes. These are:

Absolute integer This is the result of an expression which contains only integer
constants or symbols previously defined as absolute integer
only. The length is always zero and the replication factor is
always one.

Displacement integer This is the result of the difference of two offsets associated
with the same SECTION or MMAP. The length is always zero
and the replication factor is always one.

Base-Displacemet Integer
This is a displacement which is associated to a register number
and can be used by machine instruction to access memory.

Floating point This is the result of an expression that contains at least
one floating point constant or a symbol previously defined as
floating point. The length is always zero and the replication
factor is always one.

String This is the result of an expression which contains only string
constants or symbols previously defined as strings only. The
length is always zero and the replication factor is always one.

4.4 External Symbols

All symbols, created using a label preceding an opcode, are considered local symbols.
However, if there is a need to address symbols created outside the current source files,
these symbols are defined using the EXTERNAL directive, and are used using a relocation

Chapter 4: Sections and Symbols Page: 17

qualifier (see relocations on page 21).

Normally external symbols are associated with a value, which most of the time is an
address, and sometimes with size or length when the computer architecture ABI supports
it.

Local symbols can also be reference using a relocation qualifier, when the symbol is defined
in a section and is reference in a different section.

Page: 18

Chapter 5

Expressions

Opcode parameters and sub-parameters are expressions. Expressions are formed by
combining symbols and constants with unary and binary operators. Parenthesis are
allowed.

5.1 Constants

These are the constants that can be specified:

Absolute Integer It is any positive or negative integer specified in base 10,
base 16 or base 2. When using base 16 or base 2 an
underscore character can be used to separate group of digits.
For example the constant 1023 can be also be written as
0xFFF, 0x0F_FF, 0b111111111111 and 0b1111_1111_1111.
An Absolute Integer constant can also be specified as an ASCII
character. For example ’a’ is internally converted to 97.

Floating Point Floating point constants are expressed using the decimal base
only. It is composed of a positive or negative mantissa followed
by a positive or negative exponent. When the mantissa is
a fractional number the exponent is optional and defaults to
zero. When the mantissa is an integer an exponent is required,
otherwise the constant becomes and Absolute Integer. For
example Floating Point number -122E-02 can also be written

Page: 20

as -1.22 or as -12.2E-1.

String String constants are defined the same way Java string
constants are. They are enclosed in double quotes, are
internally represented as UTF-16 Unicode strings and are not
silently null terminated as in the C language. If, for example,
the string "This is a string" must be null terminated then
"This is a string\u0000" must be used.

5.2 Symbols

Symbols can be used alone or followed by a qualifier. When used alone, the actual symbol
value and value attribute is used when evaluating an expression.

Symbol qualifiers are used to specify additional values associated with the symbol. The
following qualifiers can follow a symbol without interleaving spaces:

Length When qualifying a symbol with length, the length associated
with the symbol is used instead of its value. Symbols length
are always non-negative Absolute Integers. Symbols are
length qualified by appending the .$LENGTH string to the
symbol name.

Replication When qualifying a symbol with replication, the replication
factor associated with the symbol is used instead of its
value. Symbol replication factors are always positive Absolute
Integers. Normally, replication factors are one. They are
larger than one when using a data opcode to define an array.
Symbols are replication qualified by appending the .$REPL
string to the symbol name.

Size When qualifying a symbol with size, the product of length and
replication factor associated with the symbol is used instead
of its value. Symbol sizes are always non-negative Absolute
Integers. Normally, replication factors are one. They are
larger than one when using a data opcode to define an array.
Symbols are replication qualified by appending the .$SIZE
string to the symbol name.

Chapter 5: Expressions Page: 21

Relocation When qualifying a symbol with relocation, the symbol value
is not used. Instead DVASM produces information in the
output ELF file for the linker or loader to put the actual value
of the symbol at link or load time. The reason for using
relocations is that the symbol value will be available at link or
load time only. A symbol is relocation qualified by appending
the symbol name with .@relocation_type. Relocation
types that can be used are dependent on the computer
architecture and ABI being used. @relocation_type is
case insensitive. When there is a need to specify multiple
relocations for the same symbol in an expression, a symbol
can be appended with multiple relocation types such as
symbol_name.@relocation_type1.@relocation_type2.

5.3 Operators

Operators can be unary or binary. Operator’s operand(s) can be symbols, constants or
expressions enclosed in parenthesis.

Page: 22

5.3.1 Operator Precedence

Like in any computer language each operator used in an expression has a precedence with
respect to other operators and an association direction. Table 4.3 contains the complete
list all operators with their precedence and association.

Precedence Operator Description Association

1

+ Unary Plus
- Unary Minus None
! Unary Logical Not
˜ Unary Binary Not

2 ** Power Right to Left

3
* Multiply
/ Divide Left to Right
% Reminder

4
+ Add Left to Right
- Subtract

Table 5.1: Operator Precedence in Descending Order
Cont’d

Chapter 5: Expressions Page: 23

Precedence Operator Description Association

5
« Bitwise Shift Left Left to Right
» Bitwise Shift Right

6

> Greater Than
>= Greater Equal Left to Right
< Less Than
<= Less Equal

7
== Equal Left to Right
!= Not Equal

8 & Bitwise AND Left to Right
9 | Bitwise OR Left to Right
10 ˆ Bitwise XOR Left to Right
11 && Logical AND Left to Right
12 || Logical OR Left to Right

Table 5.1: Operator Precedence in Descending Order

5.3.2 Operators and Operands Types

Each operator, unary or binary, can produce different results with different combinations
of operand(s).

For example the binary plus "+" operator will concatenate two strings when the two
operands are Strings, and it will add two integers when the two operands are Absolute
Integers. However it will generate an error when one of the operands is a String and the
other is an Absolute Integer.

These are the most general rules when using an operator in an expression:

� Absolute and Displacement Integers are handled, for the most part, the same way.
When both are used with a binary arithmetic operator, the result is normally a
Displacement Integer;

� Bitwise binary operators can only be used with Absolute or Displacement Integers as
operands in any combination;

� When an Absolute or Displacement Integer is used with a Floating Point as operands
of a binary arithmetic operator, the result is always a Floating Point type;

Page: 24

� When two Offset Integers from the same Section or MMAP have the same sign and
are subtracted from each other, or have opposite sign and added to each other the
result is an Integer Displacement. In all other cases the result is an aggregation of
separate Offset Integers (see below for a more detailed explanation);

� Comparison operators will accept Absolute Integers, Displacement Integers and
Floating Point as operands in any order. The result is always an Absolute Integer
with value of either 1 (true) or 0 (false);

� Logical operators will accept only Absolute and Displacement Integers as operand(s)
in any order, with the assumption that any non-zero value is true and zero value is
false. The result is always an Absolute Integer with value of either 1 (true) or 0
(false).

Integer Offsets aggregation are intermediate terms that arise during an expression
evaluation. An expression whose final result is an Integer Offsets aggregation is in error.

Let us consider this example:

Off_044 + Off_024 - 34 - (Off_032 + Off_10)

Symbols Off_010, Off_024, Off_032, and Off_044 are all offset from the same section
with respective values of 10, 24, 32, and 44. The first two term are first added and the
result is:

Aggregate((Off_044, plusSign), (Off_024, plusSign)) - 34 -
(Off_032 + Off_10)

Next the subtraction is evaluated, and the result is:

Aggregate((Off_044, plusSign), (Off_024, plusSign), -34) -
(Off_032 + Off_10)

Thus Absolute Integer -34 become part of the Integer Offset aggregate. Next the addition
in parenthesis is evaluated and the result is:

Aggregate((Off_044, plusSign), (Off_024, plusSign), -34) -
Aggregate((Off_032, plusSIgn), (Off_10, plusSign))

Finally the two aggregate are subtracted to each other. Since all offset are from the same
section and all positive, those on the left of the minus operator are paired to those on the
right and subtracted to each other as follows:

Chapter 5: Expressions Page: 25

Off_044 - Off_032 + Off_024 - Off_010 - 34

or

44 - 32 + 24 - 10 - 34

which results in an Integer Displacement of -8. It is important to note that if we change
the sign in front of Off_010 from plus to minus, in the original expression, Integer Offset
Off_024 cannot be paired anymore with Integer Offset Off_010, since subtraction of two
Integer Offsets of opposite sign will result in a new aggregate. This in turn results in the
expression to be in error.

A complete list of all valid operator/operand(s) combinations with corresponding results
type is given in Table 4.2. Relocation qualified symbols are excluded. Any combination not
listed will result in an error if used.

Page:
26

Operator Operation
First Operand Second Operand

Result
ABS DSP B-DSP OFF FLT STR ABS DSP B-DSP OFF FLT STR

+ Unary Plus

x ABS
x DSP

x B-DSP
x OFF

x FLT

- Unary Minus

x ABS
x DSP

x OFF
x FLT

˜ Bitwise Not
x ABS

x DSP

! Logical Not
x ABS

x DSP

Table 5.2: List of Operators and Operand Types Cont’d

Chapter
5:

Expressions
Page:

27

Operator Operation
First Operand Second Operand

Result
ABS DSP B-DSP OFF FLT STR ABS DSP B-DSP OFF FLT STR

** Power

x x ABS
x x

DSP
x x x

x x x FLT

* Multiply

x x ABS
x x

DSP
x x x

x x
FLTx x

x x

/ Divide

x x ABS
x x

DSP
x x x

x x
FLTx x

x x

% Reminder
x x ABS
x x

DSP
x x x

Table 5.2: List of Operators and Operand Types Cont’d

Page:
28

Operator Operation
First Operand Second Operand

Result
ABS DSP B-DSP OFF FLT STR ABS DSP B-DSP OFF FLT STR

+ Plus

x x ABS
x x

DSP
x x x

x x x B-DSP
x x x

OFFx x
x x

x x
FLTx x

x x
x x STR

- Minus

x x ABS
x x

DSP
x x x

x x x B-DSP
x x x

OFF
x x
x x DSP

x x
FLTx x

x x

Table 5.2: List of Operators and Operand Types Cont’d

Chapter
5:

Expressions
Page:

29

Operator Operation
First Operand Second Operand

Result
ABS DSP B-DSP OFF FLT STR ABS DSP B-DSP OFF FLT STR

« Shift Left
x x ABS

x x
DSP

x x

« Shift Right
x x ABS

x x
DSP

x x

> Bigger
x x x x

ABS
x x x x

< Less
x x x x

ABS
x x x x

>= Bigger Equal
x x x x

ABS
x x x x

<= Less Equal
x x x x

ABS
x x x x

== Equal
x x x x

ABS
x x x x

!= Not Equal
x x x x

ABS
x x x x

Table 5.2: List of Operators and Operand Types Cont’d

Page:
30

Operator Operation
First Operand Second Operand

Result
ABS DSP B-DSP OFF FLT STR ABS DSP B-DSP OFF FLT STR

& Bitwise AND
x x ABS

x x
DSP

x x

| Bitwise OR
x x ABS

x x
DSP

x x

ˆ Bitwise XOR
x x ABS

x x
DSP

x x
&& Logical AND x x x x ABS
|| Logical OR x x x x ABS

Table 5.2: List of Operators and Operand Types

Chapter 5: Expressions Page: 31

5.4 Relocation Qualifier Restrictions

When an external or internal symbol appears in an expression and it is qualified by a
relocatable attribute, the following restrictions apply:

� Only one relocation qualified symbol can appear in an expression and it must be the
first operand in the expression;

� The relocation qualified symbol can be followed only by the binary plus or minus
operators;

� The rest of the expression must resolve to an Absolute or Displacement Integer and
represent the add-on of the relocation value.

5.5 Examples

5.5.1 Absolute Integers

In the following example, symbols ABS001 and ABS002 are defined as Absolute Integers:

//
// Use ABS001 to define ASB002 by adding 64 and multiplying by 4
//
ABS002 EQU (ABS001 + 64) << 2
//
// Define ABS001 as the product of two integers
//
ABS001 EQU 12 * 145
//

It is important to note the following:

� There is no requirement that symbols must be defined in the order they are used as
in C and C++. Any order can be used as long as a circular unsolvable situation is
not used. A circular situation is, for example, symbol S001 is used to define symbol
S002 and later symbol S002 is used to define symbol S001;

� Symbol ABS002 is defined as Absolute Integer, since the expression, in its definition,
contains only integer constants.

� Symbol ABS001 is defined as Absolute Integer, since the expression, in its definition,
contains only integer constant and a symbol that is defined as an Absolute Integer.

Page: 32

5.5.2 Displacement Integers

In the following example Displacement Integers are defined by subtracting one Offset from
another:

//
// Define the length of the data section as difference of two Offsets
//
LEN001 EQU DATA002 - DATA001
//
// Define number of words in data section
//
NWORD001 EQU LEN001 / 4
//
DATA001 WRD 15[4] // Define four words initialized to 15
//

WRD 0[16] // 16 more words set to zero
//
DATA002 WRD 0[0] // Zero words (i.e. no data) to mark the end
//

It is important to note the following:

� Symbol LEN001 is a Displacement Integer since it is the difference of two offsets
within the same section or MMAP.

� Symbol NWORD001 is also a Displacement Integer since the expression used to define
it contains a Displacement Integer.

Chapter 5: Expressions Page: 33

5.5.3 Base Displacement Integers

In the following example a Base Displacement Integer is used to load a word from memory
using the RISC-V load word machine instruction.

//
BASDEF // Define register symbols

//
// At this point both registers X20 and X21 contain the address
// of data mapped by MMAP DATA
//
// Define X20 as Base Register for MMAP DATA with ID BASEID
//

BASESET BASEID:DATA, X20
//
// Define x21 as Base Register for MMAP DATA without any ID
//

BASESET DATA, X21
//
// Load first BB word within MMAP DATA into register X5
// using base register X20
//

LW X5, BASEID:BB
//
// Load third BB word within MMAP DATA into register X6
// using base register X21
//

LW X6, BB+BB.$LENGTH*2
//
// Define MMAP
//
DATA MMAP
AA WORD 0[2] // Two words (4 bytes each)
BB WORD 0[4] // Four more words (4 bytes each)
CC DWRD 0 // One double word (8 bytes)
//

It is important to note the following:

� Register X20 is defined as the base of DATA MMAP using a base ID. Thus register X20
is used as base register only when the addressed memory symbol is prefixed with the
base ID used in the BASESET directive.

� Register X21 is defined as the base of DATA MMAP without using any base ID
and is used as the default base register for any symbol in MMAP DATA within the
displacement rage of the machine instruction LW.

Page: 34

5.5.4 Floating Point

In the following example Floating Point numbers are used to create 64 bits IEEE floating
point constants in memory.

//
// Define PI using EQU directive
//
PI EQU 3.141592653589793
//
PIDW DWRD PI // Create 64 bit floating point number

// containing PI
PIDWX2 DWRD PI * 2 // Create 64 bit floating point number

// containing PI times 2
//
EULERNUM DWRD 2.718281828459045

// Create 64 bit precision point number
// containing Euler number

//

It is important to note the following:

� When PI is defined it becomes a Floating Point number since the expression used
is a single number with a decimal point. The value is internally defined by
DVASM� framework with 256 decimal digit precision.

� When PIDW storage is defined, a IEEE 64 bit number is created since the PI symbol,
which is a Floating Point number, is used in the defining expression. The same
applies for symbol PIDWX2 and symbol EULERNUM.

Chapter 5: Expressions Page: 35

5.5.5 Strings

In the following example String symbols are defined and used to create a UTF8 character
string in memory.

//
// Define first name, middle initial, and last name of a person
//
FName EQU "John"
MInit EQU "X"
LName EQU "Doe"
//
// Create UTF8 string
//
Str01 UTF_8 "User " + FName + " " + MName + ". " + />

LName + " is not in the database\U0000"
//

It is important to note the following:

� Symbols FName, MInit and LName are all defined as Strings since the defining
expressions are Strings.

� UTF8 string is created in memory by concatenating String symbols with String
constants. The UTF8 string is null terminated by inserting the unicode character
\u0000 which maps to a single byte null character.

� UTF8 string is created using label Str01. Symbol Str01 is an Offset and not a string.

Page: 36

Chapter 6

ELF Output Files

DVASM� produces object files in the ELF format only. ELF has become the standard format
for Linux and any flavor of UNIX, and is now supported by MS Windows. If your target
operating system does not support ELF format you can always use the Linux binutils to
convert an ELF object file to almost any object format known on this planet.

ELF support two formats: object and executable. DVASM� produces only objects.
Executables are produced using a linker such as the Linux ld command to combine one
or more object files into an executable module.

If C code object files are combined with DVASM� object files, an executable module can be
created by first assembling DVASM� source files, and than using the C compiler to compile
C source code and create the executable in one shot.

The format of ELF object files is beyond the scope of this manual, however it should be
noted that the content of any ELF file can be shown in readable format using the readelf
-a command.

6.1 ABI

When writing DVASM� assembly code, the first directive in the input file is SETENV. One
of the parameters to SETENV is the ABI being used. ABI stands for Application Binary
Interface. The ABI specifies, many things such as register and stack usage when calling
an external function, or when being called by another function. The only thing which is

Page: 38

relevant to DVASM� is the part of the ABI that specifies values and formats of Relocatables,
since this has an effect on how the ELF object output is generated.

6.2 Relocatables

When an assembly program references an external variable or function it uses
relocatables. Relocatables are memory areas, within the code generated, that contain
addresses, in complete or partial form, and either absolute or relative, to access those
external variables or functions.

The formats of these addresses vary by architecture and to some degree by ABI. RISC-V
architecture with System V ABI is used in all the following examples.

In the following example, a 64 bit constant within the code is created to contain the
address of function xtrfunct.

//
// Store address of function xtrfunct in a 64 bit constants
// using RISC-V relocatable of type R_RISCV_64
//
xtrfuncadr DWRD xtrfunc@_64
//

Since the address will be known only at execution time when the module is being loaded
by the operating system loader, the 64 bits containing function xtrfunc will be set by the
loader itself, and it will be different every time the module is loaded at a different location
in memory

In the following example, the address of function xtrfunc is loaded into register 10 using
PC-relative (i.e. Program Counter relative) relocatables.

//
// Load address of xtrfunct in register 10 using PC-relative
// relocatables using RISC-V relocatables of type
// R_RISCV_PCREL_HI20 and R_RICSV_PCREL_LO12_I
//
lbl001 AUIPC 10, xtrfunc@_PCREL_HI20

ADDI 10, lbl001@_PCREL_LO12_I
//

Both machine instructions have, stored in their immediate fields, the displacement between

Chapter 6: ELF Output Files Page: 39

function xtrfunc and memory location of machine instruction AUIPC. For the first
machine instruction only the high 20 bits are stored in its immediate, while for the second
machine instruction only the low 12 bits are stored. At execution time the AUICP adds
its immediate value, shifted left by 12 bits, to the current value of the program counter,
and store it in register 10. The second machine instruction adds to the same register the
missing 12 bits to form the address of function xtrfunc. Since the displacement between
function xtrfunc and the first machine instruction is known at link time, the immediates
of the two machine instructions can be set by the linker at link time. This is true only if
function xtrfunc is part of the module and does not belong to an external shared object.

The use of PC-relative relocatables makes loading a module faster since fewer relocatables
need to be reset at load time.

However when writing a boot loader or an OS kernel, the use of PC-relative relocatables
is a requirement since no loader is available to reset relocatable at boot time.

Page: 40

Chapter 7

Framework Data Opcodes and
Directives

DVASM� provides both data opcodes and directives.

Data opcodes tell the assembler to reserve memory space and initialize it to some constant
value. Directives tell the assembler how to behave under certain circumstances.

7.1 Data Opcodes

A data opcode specifies that a certain number of bytes at the current location must be
reserved and set to a specified constant. Data opcodes can only be used when a SECTION
or an MMAP is active. When a SECTION is active the bytes reserved will be initialized as
specified by the data opcode parameter(s). When an MMAP is active no initialization takes
place since an MMAP is a memory template with no binary code being generated. There
are two types of data opcodes: words and Unicode strings.

Page: 42

7.1.1 Word Data Opcodes

Data opcode statements are coded as follows:

>--+---------+---Opcode---data--+--------------------+------------------>
| | | |
+--Label--+ +--[--replFactor--]--+

>----------------------+---------------------------------------+-------><
| |
+--,-- data--+--------------------+-->--+

| |
+--[--replFactor--]--+

Label Optional label used to refer to this data.

Opcode Name of the data opcode (see table 7.1).

Pos. Parameters

data[replication], ..., data[replication]
Required, comma separated parameter list of up to 256
parameters, each specifying a constant and optionally a
replication factor. The constant is used to initialize the
reserved memory area. The replication factor is defaulted to
one, and it specifies how many areas, initialized to the same
constant value, must be reserved in memory.

Key-word Parameters

None

Words length are a power of two, starting from a length of 1 byte to a length of 64K bytes.
Word data opcodes whose name starts with BYTE_ followed by the length value all have an
alignment value of 1. Word Data opcodes whose name starts with WRD_ followed by their
length value have an alignment value equal to their respective length. Word Data opcodes
can have, as parameters, INTEGERs of type ABSOLUTE or DISPLACEMENT, and relocatables
when allowed by the architecture. Also, for word data opcodes with lengths of 2, 4, 8, 16,
and 32 bytes a FLOATING POINT parameter type can be specified, which is encoded using
the IEEE floating point specifications.

INTEGERs are encoded using two’s complement encoding. If the INTEGER is positive and
its value overflows on the sign bit, it will be encoded as unsigned. Any other overflow, for
positive or negative INTEGERs, will results in an error.

Chapter 7: Framework Data Opcodes and Directives Page: 43

INTEGERs and FLOATING POINT values are encoded using the endianness (big or little)
being active when the data opcode is parsed by DVASM� .

Table 7.1 contains the complete list of data opcodes, with alias names, parameter types
supported, length and alignment.

Name Aliases Parameter Types Length Alignment

BYTE_1 WRD_1, BYTE Integers 1 1
BYTE_2 Integers, Floating Point 2 1
WRD_2 HWRD Integers, Floating Point 2 2
BYTE_4 Integers, Floating Point 4 1
WRD_4 FWRD Integers, Floating Point 4 4
BYTE_8 Integers, Floating Point 8 1
WRD_8 DWRD Integers, Floating Point 8 8

BYTE_16 Integers, Floating Point 16 1
WRD_16 QWRD Integers, Floating Point 16 16
BYTE_32 Integers, Floating Point 32 1
WRD_32 Integers, Floating Point 32 32
BYTE_64 Integers 64 1
WRD_64 Integers 64 64

BYTE_128 Integers 128 1
WRD_128 Integers 128 128
BYTE_256 Integers 256 1
WRD_256 Integers 256 256
BYTE_512 Integers 512 1
WRD_512 Integers 512 512
BYTE_1K Integers 1K 1
WRD_1K Integers 1K 1K
BYTE_2K Integers 2K 1
WRD_2K Integers 2K 2K
BYTE_4K Integers 4K 1
WRD_4K Integers 4K 4K
BYTE_8K Integers 8K 1
WRD_8K Integers 8K 8K

BYTE_16K Integers 16K 1
WRD_16K Integers 16K 16K

Table 7.1: List of Word Data Opcodes Cont’d

Page: 44

Name Aliases Parameter Types Length Alignment
BYTE_32K Integers 32K 1
WRD_32K Integers 32K 32K
BYTE_64K Integers 64K 1
WRD_64K Integers 64K 64K

Table 7.1: List of Word Data Opcodes

When a label is specified for a word data opcode, the length of the symbol is set to the
length of a single word, the replication factor is set to the sum of the replications factors
of each parameter specified. If no replication factor is specified for a given parameter,
it is set to one. If the replication factor for a given parameter is set to zero, no data is
generated for that parameter. Zero replication is normally used to for alignment data to
the corresponding alignment of the word used.

7.1.2 Word Data Opcode Examples

In the following example a 4 byte word is defined and initialized to an ABSOLUTE INTEGER
value:

Wrd01 FWRD 4096*100 // Set value to buffer size

In the following example a null terminated string is initialized one byte at a time:

Str01 BYTE ’T’, ’h’, ’i’, ’s’, ’ ’, ’i’, ’s’, ’ ’, />
’a’, ’ ’, ’s’, ’t’, ’r’, ’i’, ’n’, ’g’, 0

It is important to note that since the string is defined as a collection of separate bytes, the
length Str01.$LENGTH of symbol Str01 is set to 1. The replication factor Str01.$REPL
is set to the number of bytes which is 17, and the total size Str01.$SIZE is set to 17 (i.e.
word length time replication factor).

Chapter 7: Framework Data Opcodes and Directives Page: 45

7.1.3 Unicode Data Opcodes

Unicode data opcode statements are coded as follows:

>--+---------+---Opcode---string--+------------------+-----------------><
| | | |
+--Label--+ +--,--BOM=boolean--+

Label Optional label used to refer to this data.

Opcode Unicode opcode: UTF_8, UTF_16 or UTF_32.

Pos. Parameters

string Required, one expression that resolve to a string, without any
subparameter (i.e. no replication factor).

Key-word Parameters

BOM=boolean Specifies if the Unicode string should be encoded starting with
a BOM character.

All three Unicode formats are supported by DVASM� . Unicode UTF-8 is supported by
opcode UTF_8, Unicode UTF-16 is supported by data opcode UTF_16 and Unicode UTF-32 is
supported by data opcode UTF_32. Alignment for the encoded storage is 1 for UTF_8, 2 for
UTF_16 and 4 for UTF_32.

All Unicode data opcodes have the key-word parameter BOM= with possible values of 1 for
true and 0 for false, with default set to false. When BOM= is set to true the the Unicode
BOM character sequence is inserted in the Unicode character encoding generated.

When characters are encoded with more than one byte, the byte order used is the
endianness (big or little) being active when the data opcode is parsed by DVASM� .

7.1.4 Unicode Data Opcode Examples

In the following example an ASCII string, null terminated to make it compatible with C
language library, is defined:

Str01 UCF_8 "Number of users is \t135\n\u0000"

Since the string contains only ASCII characters it is encoded as an ASCII string (i.e. all

Page: 46

characters are encoded as one byte). Also both special characters tab and new-line are
used. The terminating null character is specified by using the Unicode value \u0000.

In the following example a UCF 16 Unicode string is specified with a BOM character at the
beginning to identify the endianness used for encoding:

Str02 UCF_16 "This is a Unicode string encoded using UCF 16", />
BOM=1

The string will be encoded using the endianness active when the the statement is parsed
and the BOM character will be set accordingly. No null terminator is specified.

In the following example a Unicode UCF 16 string to be transmitted over a network
connection is encoded using big endianness:

BIGENDIAN // Set data constants to BIG ENDIAN
Str02 UCF_16 "This is a Unicode string " + />

"encoded using UCF 16 - big endian"
DEFENDIAN // Reset endianness to default

The string is encoded using UCF 16, big endian, since endianness is switched to big
using the BIGENDIAN directive. Endianness is reverted to default, after encoding the
string, using the DEFENDIAN directive. It is important to note that this example will
work regardless of what is the default architecture endianness, since it uses the correct
endianness to encode the string, and restores the default endianness afterword.

Chapter 7: Framework Data Opcodes and Directives Page: 47

7.2 Control Directives

In this section all control directives are documented in alphabetic order.

7.2.1 ASSERT Directive

Verify that the given expression resolves to true. If not, raise an error.

>----------------ASSERT------expression--------------------------------><

Label Not allowed.

Name ASSERT.

Pos. Parameters

expression Required, must resolve to an INTEGER of type ABSOLUTE or
DISPLACEMENT.

Key-word Parameters

None

In the following example a MMAP is defined to map data in an working area whose
addressed is passed to a function by the caller. The working area is 64 bytes long. The
ASSERT directive is used to make sure that the MMAP length is no longer that 64 bytes,
now and in the future if it will be modified during maintenance.

//
//WAMAxLength EQU 64 // Define work area length
//
//WArea MMAP
//
//WAVect1 FWRD 0[8] // Vector of eight words
//
//WAVext2 DWRD 0[4] // Vector of 4 double words
//
WALength EQU $PC-WArea // Define MMAP length
//

ASSERT WALength <= WAMaxLength
// Verify that MMAP does not overflow

//

Page: 48

7.2.2 BASECLEAR Directive

Drop all base registers previously defined.

>----------------BASECLEAR---><

Label Not allowed.

Name BASECLEAR.

Pos. Parameters

None

Key-word Parameters

None

In the following example three registers, previously defined as base registers, are dropped
using the BASECLEAR directive.

//
// Define three base registers
//

BASESET Data1, R10
BASESET Data2, R12
BASESET ID3:Data3, R18

//
// Insert code that use the three registers here
//

BASECLEAR // Drop all previously define base registers
//

Chapter 7: Framework Data Opcodes and Directives Page: 49

7.2.3 BASEDROP Directive

Drop a previously define base register.

>----------------BASEDROP-------register---+------------------+--------><
| |
+--,--register-->--+

Label Not allowed.

Name BASEDROP.

Pos. Parameters

register Required, list of up to 256 expressions, each resolving to
INTEGER ABSOLUTE. These are the base registers that must
be dropped.

Key-word Parameters

None

In the following example three registers are defined as base registers, and two of them
are than dropped using the BASEDROP directive.

//
// Define three base registers
//

BASESET Data1, R10
BASESET Data2, R12
BASESET ID3:Data3, R18

//
// Insert code that use the three registers here
//

BASEDROP R12, R18 // Drop base register R12 and R18
//

Page: 50

7.2.4 BASESET Directive

Set a base register using an OFFSET or a BASE DISPLACEMENT in the form ID:OFFSET.

>----------------BASESET--------offset,---register---------------------><

Label Not allowed.

Name BASESET.

Pos. Parameters

offset Required, must resolve to either type OFFSET or type BASE
DISPLACEMENT. This is the memory location pointed by the
base register.

register Required, must resolve to type INTEGER ABSOLUTE. This is the
base register.

Key-word Parameters

None

Chapter 7: Framework Data Opcodes and Directives Page: 51

In the following example, two registers are defined as base registers using the BASESET
directive and they are used to load two words from storage. Both words are within the
range of both base registers via a positive or negative offset (RISC-V supports negative
offsets). In both cases DVASM� will choose the smallest offset in absolute value.

//
// Define three base registers
//

BASESET Data1, R12 // Define R12 as base register for Data1
BASESET Data2, R18 // Define R18 as base register for Data2

//
LW R21, Data1+8

// Load third word in Data1
// Base register R12 is used with
// offset +8. If R12 were defined as
// base R18 would be used with
// offset -44

//
LD R20, Data2+8

// Load second double word in Data2
// Base register R18 is used with
// offset +8. If R18 were not defined
// as base register R12 would be used
// with offset +60

//
Data1 FWRD 13[8] // Define word vector
//
Data2 DWDR 9[4] // Define double word vector
//

Page: 52

In the following example, two different registers are set as bases for the same MMAP using
different base IDs. Each register points to a different instance of the MMAP in memory.
The use of base IDs allow to specify which instance of the MMAP is being accessed.

//
// Define three base registers
//

BASESET ID1,DataCell, R12 // Define R12 as base register
// for DataCell first instance
// using base ID ID1

BASESET ID2:DataCell, R18 // Define R18 as base register
// for DataCell second instance
// using base ID ID2

//
LW R20, ID1:DataCell+8 // Load third word in first

// instance of DataCell
//

SW R20, ID2:Data1+4 // Store it in second word of
// second instance of DataCell

//
DataCell MMAP

FWRD 13[8] // Define word vector
//

Chapter 7: Framework Data Opcodes and Directives Page: 53

7.2.5 BIGENDIAN Directive

Set byte encoding of following Data opcodes to Big Endian.

>----------------BIGENDIAN---><

Label Not allowed.

Name BIGENDIAN.

Pos. Parameters

None

Key-word Parameters

None

An example on how to use BIGENDIAN is given in subsection describing directive
DEFENDIAN on page 59.

Page: 54

7.2.6 CNTRES Directive

Reset Program Counter to default value, which is the current SECTION or MMAP length.

>----------------CNTRES--><

Label Optional.

Name CNTRES.

Pos. Parameters

None

Key-word Parameters

None

An example on how to use CNTRES is given in subsection describing directive CNTSET on
page 55.

Chapter 7: Framework Data Opcodes and Directives Page: 55

7.2.7 CNTSET Directive

Set Program Counter to the offset specified.

>----------------CNTSET-------offset-----------------------------------><

Label Optional

Name CNTSET.

Pos. Parameters

offset Required, it specifies the new offset for the Program Counter
within the current SECTION or MMAP.

Key-word Parameters

None

Page: 56

In the following example the directives CNTSET and CNTRES are used to overlay different
type of data within an MMAP.

//
// Start the MMAP here
//
Data MMAP
//
Vect01 FWRD 0[8] // Define 8 word vector
//

CNTSET Vect01+4*2 // Reset program counter to third word
// // of Vect01
Str01 BYTE 0[8] // Define eight byte vector overlaying
// // word 3 and 4 of Vect01
HVect HWRD 0[4] // Define vector of 8 half words

// Overlaying words 5 and 6 of Vect01
//
FVect DWRD 0[2] // Define 2 double word vector
// // Overlaying words 7 and 8 of Vect01
// // and extending MMAP by 8 more bytes
//

CNTSET Str01 // Reset program counter to Str01 which
// // is the same as 3 word of Vect01
//
Addr01 DWRD 0 // Overlay Str01 and words 3 and 4 of
// // Vect01 with a double word
//

CNTRES // Set program counter to current length
// // of MMAP which is the size of Vect01
// // plus 8 bytes
//

Chapter 7: Framework Data Opcodes and Directives Page: 57

7.2.8 COMMON Directive

Define a COMMON storage area. Common block are normally used by programs written
in the FORTRAN language.

>----------------COMMON---extSymbol------------------------------------->

>---------+---+--><
| |
+--,--+---------+-----+-----------------------------------+

| | | |
+--align--+ +--,--+----------+---+--------------+

| | | |
+--length--+ +--,--extName--+

Label Not allowed.

Name COMMON.

Pos. Parameters

extSymbol Required, expression must contain only one token which refers
to an EXTERNAL symbol. It defines the external symbol used to
access the COMMON from within the source code.

align Optional, must be of type INTEGER ABSOLUTE. It defaults to a
value of 1. It defines the alignment of the COMMON.

length Optional, must be of type INTEGER ABSOLUTE or INTEGER
DISPLACEMENT. It defaults to a value of 0. It defines the length
of the COMMON.

extName Optional, must be of type STRING. It defaults to a null string.
It defines the external name used in the ELF files. When
defaulted to a null string, parameter 1 is used instead.

Key-word Parameters

None

Page: 58

In this example a COMMON block is defined with internal name COMMDATA external name
CommonData of 1 megabyte length and aligned on a page boundary (4096 bytes).

//
// Define common block
//

COMMON COMMDATA, 4096, 256*4096, "CommonData"
//

Chapter 7: Framework Data Opcodes and Directives Page: 59

7.2.9 DEFENDIAN Directive

Set byte encoding to the default endianness, which is defined by the the architecture/ABI
combination used in the SETENV directive.

>----------------DEFENDIAN---><

Label Not allowed.

Name DEFENDIAN.

Pos. Parameters

None

Key-word Parameters

None

Page: 60

In the following example the directive BIGENDIAN and DEFENDIAN are used to map a
header of a network message with integers in network order endianness, and then reset
endianness to the default value.

//
// Switch endianness to Big Endian
//

BIGENDIAN // Set endianness to BIG
//
DataType FWRD 35 // Define data type
//
DataLength FWRD 1024 // Define data length
//

DEFENDIAN // Reset endianness to default
//

The above example can be embedded in a macro. The macro itself can be used in multiple
platforms, some using Big Endian, and some using Little Endian. The directive DEFENDIAN
will reset the endianness to the default for the platform being used, without the need to
know the platform specific endianness.

Chapter 7: Framework Data Opcodes and Directives Page: 61

7.2.10 END Directive

End input file.

>----------------END---><

Label Not allowed.

Name END.

Pos. Parameters

None

Key-word Parameters

None

The END directive indicates the end of the source file. Every source file must have one END
directive at its end. After the END directive only comments are allowed, anything else will
result in an error. In the following example the END directive is used to terminate input.

Comments are inserted after the END since it is allowed by DVASM� .

//
// Insert code here
//

END // End of code
//
// We use here some comments, for example as a summary of maintenance
// Only comments are allowed to followed the END statement
//

Page: 62

7.2.11 EQU Directive

Define a new symbol.

>------Label-----EQU-----expression------------------------------------><

Label Required.

Name EQU.

Pos. Parameters

expression Required, must resolve to any type except an external symbol
or a relocatable expression.

Key-word Parameters

None

In this example symbol Data01 is defined as an INTEGER ABSOLUTE

//
Data01 EQU 1 << 10 // Define 1024
//

In this example symbol XXXLEN is defined as a INTEGER DISPLACEMENT

//
XXX FWRD 0[4] // 4 word vector
//
YYY FWRD 0[0] // End of vector
//
XXXLEN EQU YYY-XXX // Define length of vector which is 16
//

Chapter 7: Framework Data Opcodes and Directives Page: 63

7.2.12 EXPORT Directive

Export a local symbol.

>----------------EXPORT-----name--+------------------------------------->
|
+--,--+--------+---------------------->

| |
+--type--+

>--+-------><
|

>---------+--+
| |
+--,--+--------+---+---------------------------------+

| | | |
+--bind--+ +--,--+--------+---+--------------+

| | | |
+--size--+ +--,--extName--+

Label Not allowed.

Name EXPORT.

Pos. Parameters

name Required, expression must contain only one token which refers
to a symbol to be exported.

type Optional, must be of type INTEGER ABSOLUTE. It default to a
value of 1. It defines the exported symbol type to be used in
the ELF file.

bind Optional, must be of type INTEGER ABSOLUTE. It defaults to a
value of 1. It defines the exported symbol bind type to be used
in the ELF file

size Optional, must be of type INTEGER ABSOLUTE or INTEGER
DISPLACEMENT. It defaults to a value of 0. It defines the
exported symbol size in bytes to be used in the ELF file.

extName Optional, must be of type STRING. It defaults to a null string.
It defines the name to be used in the ELF files for the symbol
being exported. When defaulted to a null string, parameter
1 is used instead. The usage of parameter 1 as the external
name is case sensitive, even though the symbol it refers to is

Page: 64

case insensitive. For example if a symbol, originally defined
as Abcd, is spelled as AbCd in the EXPORT directive, than aBcD
is used as the exported name default.

Key-word Parameters

None

In the following example, run time default parameters are defined in a block of data, and
its symbol /ttxDefParm is exported. exported.

//
// Define default parameter block
//
DefParm DWRD 0[0]
//
NumThreads FWRD 12 // Default number of thread
DefMem FWRD 1024*6 // Default memory in megabyte (6 GB total)
//
DefPort HWRD 3999 // Default port
DefParmLen EQU $PC-DefParm // Define parm length
//

EXPORT DefParm, , , DefParmLen, "DefaultParameters"
// ELF symbol name is "DefaultParameters"
// Type and bind are defaulted to 1
// Size is set to length of DefParm

//

All possible values for ELF types, attributes, and bind for a section or an external/exported
symbol are defined in the framework macro FrameWorkDef.mac.

Chapter 7: Framework Data Opcodes and Directives Page: 65

7.2.13 EXTERNAL Directive

Define an external symbol for internal use.

>----------------EXTERNAL-----name-------------------------------------->

>---------+--------------------------------------+---------------------><
| |
+--,--+--------+-----+-----------------+

| | | |
+--type--+ +--,--+-----------+

| |
+--extName--+

Label Not allowed.

Name EXTERNAL.

Pos. Parameters

name Required, expression must contain only one token which refers
to the name used internally to refer to the external symbol.

type Optional, must be of type INTEGER ABSOLUTE. It defaults to a
value of 1. It defines the external symbol bind type.

extName Optional, must be of type STRING. It defaults to a null string.
It defines the name to be used in the ELF files for the external
symbol. When defaulted to a null string, parameter 1 is
used instead. In this case, even though the external symbol
name used internally is case insensitive, the external name,
as stored in the ELF file is case sensitive.

Key-word Parameters

None

Page: 66

In the following example external symbol DefaultParameters, which refers to a block of
data containing run time default parameters, is defined as external, with name DefParm
used internally.

//
EXTERNAL DefParm ,, "DefaultParameters"

// DefParm is used internally only
// Bind type is defaulted to 1

//

All possible values for ELF types, attributes, and bind for a section or an external/exported
symbol are defined in the framework macro FrameWorkDef.mac.

Chapter 7: Framework Data Opcodes and Directives Page: 67

7.2.14 LITTLEENDIAN Directive

Set byte encoding to little endian.

>----------------LITTLEENDIAN--><

Label Not allowed.

Name LITTLEENDIAN.

Pos. Parameters

None

Key-word Parameters

None

An example on how to use LITTLEENDIAN is given in subsection describing directive
DEFENDIAN on page 59.

Page: 68

7.2.15 MMAP Directive

Start a new Memory Map template.

Label Required.

Name MMAP.

Pos. Parameters

None

Key-word Parameters

None

In this example a new MMAP is started. If a SECTION or another MMAP is active, it is
terminated.

//
ParmBlock MMAP // Define mapping of parameter block
//
Type FWRD 0 // Type of request
RC FWRD 0 // Return code
DataArea DWRD 0[63] // Data area
//

Initialization constants can be set to any valid value but are ignored.

Chapter 7: Framework Data Opcodes and Directives Page: 69

7.2.16 SECTION Directive

Start a new Section.

>-----Label------SECTION-----type--,--attr------------------------------>

>---------+---------------------------------------+--------------------><
| |
+--,--+---------+-----+-----------------+

| | | |
+--align--+ +--,--+-----------+

| |
+--extName--+

Label Required.

Name SECTION.

Pos. Parameters

type Required, expression must resolve to INTEGER ABSOLUTE and
specify the ELF section type.

attr Required, expression must resolve to INTEGER ABSOLUTE and
specify the ELF section attribute type.

align Optional, expression, when specified, must resolve to INTEGER
ABSOLUTE and specifies the section alignment. When not
specified it is set to 1. The final alignment value for the section
is set to the largest values between the value specified or
defaulted in the SECTION directive and the largest alignment
value for each data or machine instruction component specified
inside the section.

extName Optional, expression, when specified, must resolve to STRING
and specifies the external name for the section, that is the
name stored in the ELF file. When not specified the label name
will be used. In this case, even though the label defines a
symbol that is case insensitive, the external name, as stored
in the ELF file is case sensitive.

Key-word Parameters

None

Page: 70

In the following example, directive SECTION is used to specify a new section.

//
Code SECTION 1, /> Section data is inside ELF file

2+4, /> Executable code
16, /> Align on quad word
".text" // Section name used in ELF file

//

All possible values for ELF types, attributes, and bind for a section or an external/exported
symbol are defined in the framework macro FrameWorkDef.mac.

Chapter 7: Framework Data Opcodes and Directives Page: 71

7.2.17 SETENV Directive

Informs DVASM� what computer architecture, architectural options, ABI and OS are to be
used for this input file. Directive SETENV must be used only once in the input file before
any SECTION or MMAP directive has been specified.

>----------------SETENV---arch--,--archOpt------------------------------>

>---------+------------------------------------+-----------------------><
| |
+--,--+-------+-----+----------------+

| | | |
+--abi--+ +--,--+----------+

| |
+--osName--+

Label Not allowed.

Name SETENV.

Pos. Parameters

arch Required, expression must resolve to STRING which contains
the computer architecture being used.

archOpt Required, expression must resolve to STRING which contains
the architecture options being used.

abi Optional, expression, when specified, must resolve to STRING
which contains the ABI being used.

osName Optional, expression, when specified, must resolve to STRING
which contains the OS being used. This parameter is not used
by DVASM� framework, but is passed, on request, to macros,
so that they can be OS dependent.

Key-word Parameters

None

Page: 72

In the following example, directive SETENV is used to specify RISC-V architecture for
Linux.

//
SETENV "RISCV", /> RISC-V architecture

"RV64I:a,c,d,m,n,zicsr,zifencei", /> RISC-V options
"LP64D", /> 64 bits ABI
"linux" // Linux OS

//

When the SETENV directive is encountered, DVASM� will search for the Java module
supporting the architecture. If found it will insert the macros that come with the
architecture into the macro search path between the framework macros, which are last,
and the application macros.

The first parameter string is converted to upper case and used to search for the Java
module supporting the architecture. If misspelled the search will fail.

When assembling multiple input files with one command, the parameter used by the
SETENV directive must be identical in each input file.

To avoid errors and simplify updates to SETENV parameters, the directive should be
embedded in an application macro used by all input files of the project.

Chapter 7: Framework Data Opcodes and Directives Page: 73

7.2.18 SETFILE Directive

Direct DVASM� to generate a record in the ELF output file containing the input file name.

>----------------SETFILE---><

Label Not allowed.

Name SETFILE.

Pos. Parameters

None

Key-word Parameters

None

In this example the SETFILE directive is used to tell DVASM� to insert a source file name
record into the generated ELF file.

//
SETFILE // Store source file record inside the ELF file

//

The SETFILE directive can be used only once, within an input file.

Page: 74

Chapter 8

Macro Processor

Assembly macros are programs written by the coder and executed by the assembler when
their name is encountered in place of opcodes. The purpose of macros is code reuse, just
like in-line C functions. For example if a program needs to repetitively load a number from
memory into a register, add it to another register, and store the result back to memory,
it is very convenient to use a macro and achieve in one line what it would take three
lines otherwise. This results in shorter and more readable source code, without any loss
of performance.

Macros can be short and simple or very complex and generate a lot of code. For example,
the DVASM� support macros for the RISC-V architecture, include a macro that implements
heap sort, and a set of macros that implement, insert, delete and search of AVL trees.

When DVASM� reads an opcode, it checks if a macro with that name exists in its macro
search path. If one exists, it pass control to the macro processor which read the macro
parameters, and execute the macro in a sandbox.

It is important to remember that all DVASM� macros are executed before the assembler
resolve symbols. For this reason information such as symbols’ values, lengths, etc. are
not available when the macro is being executed. In its essence a macro is a program that
process input parameters and generates output statements, i.e. strings.

DVASM� macros are coded in JavaScript® , and are executed within a
JavaScript® sandbox. DVASM� specific functions are available to the macro
JavaScript® code to interact with DVASM� and direct DVASM� to generate code.

Page: 76

A DVASM� macro is composed of two parts: A header and the actual
JavaScript® program. Each DVASM� macro must have a header. The header is
used to name the macro and its parameters, if any, both positional and key-word
parameters.

8.1 A simple example

A simple example, for the RISC-V architecture, is the best way to introduce the reader on
how to write DVASM� macros. Macro ADDMEM generates code to load a content of a word,
add to it a value and store it back. To be used macro ADDMEM must be stored in a file
named ADDMEM.mac, case insensitive, and store in a directory which is in the search path
DVASM� uses to search for macros.

The source code of macro ADDMEM is:

//MACRO ADDMEM MemLoc, Value, WReg, WType=!""
//

var ld // Load machine instruction
var st // Store maachine instruction

//
// Check if word type is specified;
//
if (WType !== "") // Validate WType

if (["H", "W", "D"].indexOf(WType.toUpperCase()) < 0)
return DVASM.putError(

"Value of key-word parameter [" + WType + "] is invlid. " +
"Possible values are: ’H’, ’W’, ’D’");

else {
eval(DVASM.getEnv()[4]); // Get env Values
WType= abiWID; // Override WType

}

ld= "L" + WType; // Set load MI
st= "S" + WType; // Set store MI

//
// Generate code
//

\#Label #ld #WReg, #MemLoc // Load memory content
\ ADDI #WReg, #Value // Add value
\ #st #WReg, #MemLoc // Store result back

Chapter 8: Macro Processor Page: 77

8.1.1 The Header

In the above example, the first line is the macro header.

The line is a JavaScript® line comment followed by the word MACRO with no interleaving
blanks. Parameters both positional and/or key-word follow.

In this case there are three positional parameters MemLoc, Value and WReg. Parameter
MemLoc is the memory address of the word to be added to, parameter Value is the value
being added, and parameter WReg is a working register.

When the macro is executed the header line is changed by DVASM� so that
JavaScript® variables MemLoc, Value and WReg are each initialized to the values coded
as parameters when invoking the macro. Also if the macro is invoked with a label,
JavaScript® variable Label is set to its value, otherwise it is set to null.

The key-word parameter WType specifies the type of word being addressed for the addition
and it is defaulted to a null string. It can be set to either ’H’ for half word, ’W’ for
full word, and ’D’ for double word. When it is defaulted to null the macro uses the
architectural word length, either 32 or 64 bits, as a target.

8.1.2 The Code

The code in the above example is divided into two parts. In the first the correct machine
instruction opcode for load and store are set in JavaScript® variables ld and st
depending on the value of WType.

If key-word parameter WType is set, it is validated.

If WType is not set, the code execute the line:

eval(DVASM.getEnv()[4]);

This line uses function DVASM.getEnv() to get an array of string each containing
environment information. The 5th and last string in the array is an architecture/ABI
specific string containing semicolon separated JavaScript® statements. Each statement
initialize a variable, each starting with prefix "abi", to an architecture/ABI specific value.
This string is than executed with the JavaScript® eval function so that all variable in
the above string are assigned. Variable abiWID in particular, contains either the value
’W’, when the RISC-V architecture is 32 bits, and ’D’ when it is 64 bits. In this case, it

Page: 78

is used by the macro, to override key-word parameter WType to the word address size used
by the architecture.

The last two lines before code generation section set JavaScript® variables ld and st
to the correct machine instruction opcodes.

The last three lines of macro ADDMEM generate the actual code. Each line starts with the
backslash character in position 1, and each string starting with the pound character is
substituted with the value in the corresponding JavaScript® variable.

Chapter 8: Macro Processor Page: 79

8.2 The Header

In this section we are going to list the complete specification of a macro header.

8.2.1 Header Format

The macro header is composed of one or more lines at the start of the macro. Each line
must start with a JavaScript® line comment // starting in position one. The first line
must start with the string //MACRO followed by one or more blanks. The macro name and
parameters follows in the first line and/or the following lines.

When using multiple lines, each line except the last must terminate with the continuation
comment /> optionally followed by a comment string. The last line can include a comment
at the end after another line comment //.

Here is an example of a one line macro header:

//MACRO TestMacro Parm1, Parm2{integer}, keyParm{integer}[2]= [13, 15]

Here is the same macro coded on multiple lines with comments:

//MACRO TestMacro /> Macro name
// Parm1, /> First positional parameter
// Parm2{integer}, /> Second positional parameter
// keyParm{integer}[2]= [13, 15] // Key word parameter

8.2.2 Header Parameters

Two type of parameters can be defined in a macro header: positional parameters and
key-word parameters. All parameters are comma separated. Blanks are allowed.

Positional Parameters

Positional parameter are matched with positional arguments used when invoking the
macro by their position. Each positional parameter has a name that must be a valid
JavaScript® variable. JavaScript® variable Label must not be used since it is
reserved to pass the name of the label used, if any, in the statement invoking the

Page: 80

macro. Each argument value at invocation is assigned by DVASM� macro processor to
a JavaScript® variable with name equal to the matched parameter name. This is the
coding diagram for positional parameter definitions:

>--+--ParmName--+-------------+--+--+---------+---+---><
| | | | | |
| +--{integer}--+ +--[]-----+ |
| | | | | |
| +--{Boolean}--+ +--[n]----+ |
| | | |
| +--[n-m]--+ |
| |
+---------------{optional}---------------------+

In the above diagram the words in curly brackets indicates if the parameter must be
of type integer or Boolean. The default type is string. When integer is specified a valid
signed integer must be used as corresponding argument at invocation time. When Boolean
is specified, any of the four the case insensitive strings yes, true, no, and false must
be used as corresponding argument at invocation time. Strings yes and true are mapped
to a JavaScript® value of true, while the remaining two are mapped to false.

Following the type specification there are three type of list specification. The first []
indicates a list of any length, the second [n] indicates a list of fixed length n and the
third [n,m] indicates a list with a minimum length of n and a maximum length of m.
In JavaScript® a list variable is a variable that contains a list of values that can be
accessed using an index (i.e. same as a C language array). When no list specification is
used, the parameter is defaulted to single value and not a list.

No blanks are allowed in between the parameter name, the attribute and the list
specification.

A dummy positional parameter specification, coded as optional, can be inserted in the
list of positional parameters to separate the parameters that are required from the ones
that are optional. When an optional parameters are not used, at macro invocation, the
corresponding argument is set to null. {optional} can be used only once and must be
followed, in the parameter list, by at least one positional parameter. This example shows
how to use {optional}:

//MACRO MacroName Parm1{integer}, {optional}, Parm2

In the above case, when invoking the macro, Parm1 must be matched by an argument,
while Parm2 if not matched is defaulted to null.

Chapter 8: Macro Processor Page: 81

Key-word Parameters

Key-word parameters differ from positional parameters as follows:

� An argument is matched, at invoking time, by name and not by position;

� A key-word parameter must be followed by default values used when a matching
argument is not used. Default values are verified to follow the rules established by
the parameter attribute and list specifications;

� Key-word parameters can be placed anywhere in the parameter list without any effect
on the relative position of positional parameters.

Otherwise, key-word parameters and positional share the same attribute and list
specification.

This is the coding diagram for key-word parameters:

>--ParmName--+-------------+--+--+---------+--=--defaultvalues--><
| | | |
+--{integer}--+ +--[]-----+
| | | |
+--{Boolean}--+ +--[n]----+

| |
+--[n-m]--+

No blanks are allowed in between the parameter name, the attribute, the list specification
and the equal sign. After the equal sign blanks are allowed.

More about Attributes and Lists

The reason the coder is given the option to specify attribute and list specifications in the
macro header is that it minimize the coder need to verify an argument correctness. For
example if a parameter has attribute Boolean, the coder can rely on the fact that the
DVASM� macro processor has already verified that the JavaScript® variable containing
the value of the matching argument is a valid Boolean variable. This is a time saver since
verifying variable type and value in JavaScript® can be time consuming.

Page: 82

8.3 Invoking a Macro

A macro is invoked just like an opcode or a directive. The only difference is the way
parameters are coded. The general rules are as follows:

� Al positional parameters defined in the macro header must be specified, except for
those parameter that follows the {optional} clause in the header;

� Key word parameter are optional;

� Parameter type as specified in the macro header must be followed.

� When the parameter type is string, if a string is passed enclosed in single or double
quotes either quotes are passed as part of the parameter string;

� If the parameter type is string, and there is a need to enclose it in quotes, but
the quotes must not be part of the parameter value passed, use double quote
where the first quote is preceded by the character ’!’. For example, if parameter
!"This is a test", the value passed will be This is a test. A null
string (i.e. zero length) can be passed as !"".

� If the parameter type is Boolean these four case insensitive values can be used: true,
false, yes, and no;

� If the parameter is defined as a list of any type in the macro header, a comma
separated list enclose in square brackets must be passed. If the size of the list is
specified in the header, it must be matched by the number of values passed in the
list, otherwise, any number is acceptable including the case of an empty list.

For example for a macro defined with header:

//MACRO TSTMCR p1{Boolean}, p2[], p3{integer}[3]

can be invoked as follows:

TSTMCR true, />
[test, "With double quotes", />

!"Transparent quotes to keep spacing"], />
[15, 31, -56]

Chapter 8: Macro Processor Page: 83

A special short hand can b e used when a list of string must be passed, whose values use
the same prefix followed by an integer of increasing value. In this case the parameter
can be specified as follows:

[PrefixStartingInteger-EndingInteger]

For example macro COMP is defined with header:

//MACRO COMP p1, p2, p3, WReg[5]

The parameter WReg is used to pass working registers, in this case 5 of them. These
are examples on how macro COMP can be invoked using the short hand notation and the
corresponding regular notation

COMP s3, s5, s2, [t1-5] // Short hand

COMP s3, s5, s2, [t1, t2, t3, t4, t5] // Regular

COMP s3, s5, s2, [a1-2, t1-3] // Short hand

COMP s3, s5, s2, [a1, a2, t1, t2, t3] // Regualar

COMP s3, s5, s2, [a1, t2-5] // Short hand

COMP s3, s5, s2, [a1, t2, t3, t4, t5] // Regular

Page: 84

8.4 Execution Environment

DVASM� macros are written in regular JavaScript® language, the same language
normally used for WEB applications. The macro JavaScript® code is executed in a
sandbox by GrallVM, and it can communicate exclusively with DVASM� .

When DVASM� decide that the opcode encountered is a macro, it reads the macro code
and modifies it as follows:

� Substitute the first line with a sequence of semicolon separated statement that do the
following:

– Define a function statement to enclose the code in a function;

– Execute a statement that initialize all parameter variables to the correct values.

� Convert every code generating line, starting with a backslash in position one, to a
DVASM.formatLine or DVASM.formatLineLeft function call. See page 92 for more
information;

� Add, at the bottom of the code, a new line with a a right curly bracket to end the
function, followed by call to the same function.

DVASM� than asks GraalVM® to compile the macro code. GraalVM® , in turn, checks if
it already has a compiled copy to reuse, and if not, it compiles it. Than executions starts.

Chapter 8: Macro Processor Page: 85

8.4.1 DVASM� Macro Functions

Each DVASM� macro communicates with DVASM� via a set of predefined functions. These
function allows a macro to query the environment, generate code and access some selected
Java functions. All these function are implemented in Java and not in JavaScript® .
GraalVM® converts parameters passed by a function call within the macro to the correct
object type in Java whenever possible, and it is important that parameter passed match
the definition given for each function.

Function DVASM.insertLine is defined as follows:

public void DVASM.insertLine(String line)

This function generates a single line of code which is the string passed as an argument.
The line is left unchanged, with no attempt to indent it, or format it in any way.

Page: 86

Function DVASM.formatLine is defined as follows:

public void DVASM.formatLine(String lbl, String opCode,
String parm, String comm)

This function generates a single, formatted line of code which is formed using the four
strings passed as arguments:

� Argument lbl is the line label. If none is is being passed a zero length string must
be used;

� Argument opCode is the line opcode. If none is is being passed a zero length string
must be used;

� Argument parm is a string with all the opcode parameters. If none is is being passed
a zero length string must be used;

� Argument comm is a string containing a comment. If none is is being passed a zero
length string must be used.

The line being generated is formatted by putting the label at offset 0, and putting
the remaining three arguments at predefined tab location plus the current indentation.
Function DVASM.formatLineLeft is defined as follows:

public void DVASM.formatLineLeft(String lbl, String opCode,
String parm, String comm)

This function work the same as DVASM.formatLine. The only difference is that it uses
the current indentation decreased by one.

Chapter 8: Macro Processor Page: 87

Function DVASM.setIndentIn is defined as follows:

public void DVASM.setIndentIn()

This function increase the indentation setting by one.

Function DVASM.setIndentOut is defined as follows:

public void DVASM.setIndentOut()

This function decrease the indentation setting by one.

Page: 88

Function DVASM.putInfo is defined as follows:

public void DVASM.putInfo(String msg)

This function add an informational message associated with the statement that invoked
the macro being executed. The message will show in the output listing.

Function DVASM.putWarning is defined as follows:

public void DVASM.putWarning(String msg)

This function add a warning message associated with the statement that invoked the
macro being executed. The message will show in the output listing.

Function DVASM.putError is defined as follows:

public void DVASM.putError(String msg)

This function add an error message associated with the statement that invoked the macro
being executed. The message will show in the output listing. Issuing an error message
will stop DVASM� from executing the following phases of the assembly process, such as
symbols’ resolution and code generation.

Chapter 8: Macro Processor Page: 89

Function DVASM.putJSGlobal is defined as follows:

public void DVASM.putJSGlobal(String name, Object object)

This function allows the executing macro to store any JavaScript object as a tag and value
pair for later retrieval and use by another macro.

Function DVASM.getJSGlobal is defined as follows:

public Object DVASM.getJSGlobal(String name)

This function retrieve JavaScript object that has been previously stored using the
putJSGlobal function.

Function DVASM.dropJSGlobal is defined as follows:

public Object DVASM.dropJSGlobal(String name)

This function erase a JavaScript object that has been previously stored using the
putJSGlobal function.

Functions putJSGlobal, getJSGlobal and dropJSGlobal are intended to be used to
save states needed to be shared by multiple macros, such as control flow macros IF, ELSE,
WHILE, etc. Another possible use is to cache results from CPU intense calculations, such
as compiling regular expressions.

Page: 90

Function DVASM.getNewLabel is defined as follows:

public String DVASM.getNewLabel()

This function allows the executing macro to get a unique symbol to be used when
generating code. The symbol returned is a string starting with "Asm" followed by a
six decimal digit. Everytime this function is called, the 6 digit number is increased by
one, in order to generate a unique symbol at each call. TO assure uniqueness the coder
must refrain from ever using symbols starting with "Asm" followed by six decimal digits.

Function DVASM.getEnv is defined as follows:

public String[] DVASM.getEnv()

This function returns a string array of size 5. The first 4 elements in the array contain
the 4 parameters passed to the SETENV directive. The fifth element is architecture
dependent and contains a set of JavaScript® statements, semicolon separated, that
should be executed with the JavaScript® function eval. Upon execution, several
JavaScript® variable will be initialized to values that further describe specific attributes
of the architecture being used, such as the number and size of available registers.
For the JavaScript® variable names used, and what values they contain, the specific
architecture manual should be consulted.

Chapter 8: Macro Processor Page: 91

Function DVASM.getEvalParm is defined as follows:

public String DVASM.getEvalParm()

This function returns a string which contains several JavaScript® statements,
semicolon separated. The string is executed using the JavaScript® eval function to
initialize the JavaScript® macro parameter variables to the arguments specify by the
macro invocation. This function is inserted by DVASM� in the first line of the macro so
that parameter JavaScript® variables have the correct values when execution is started.
This function can also be used by the coder for debugging purposes, by printing the
returned string, when he/she thinks that parameter values are not what they are expected
to be.

Function DVASM.getCode is defined as follows:

public String DVASM.getCode()

This function returns a string which contains the whole macro JavaScript® code after
DVASM� has pre-processed it, just before execution. The purpose of this function is for
debugging and the string returned by it should be printed for inspection by the coder.

Page: 92

8.4.2 Generating Code

There are two ways to generate code in a DVASM� macro. The first is to directly use
function insertLine, formatLine and formatLineLeft. The second is to use template
lines which start with ’\’ character and contain JavaScript® variable prefixed with the
’#’. for example the following macro code:

var reg1= "s5";
var reg2= "a1",
var opCode= "MV";
var lbl= getNewLabel();

\\#lbl #opCode #reg1, #reg2 // Copy register #reg2 to #reg1

will be converted by DVASM� during pre-processing to the following JavaScript® code:

var reg1= "s5";
var reg2= "a1",
var opCode= "MV";

formatLine(lbl, opCode, reg1 + ", " + reg2,
"// Copy register " + reg2 + " to " + reg1);

The code generated will look like:

Asm000001 MV s5, a1 // Copy register a1 to s5

The following should be noted:

� Template line are converted to code using formatting and, as a consequence, indented
to the current indentation;

� If formatting and indentation is not wanted, the line should be generated by using
the insertLine function directly;

� JavaScript® variable substitution applies everywhere in the line, including in the
comment section;

� JavaScript® variable substitution applies only to non array
JavaScript® variables. Array variable will not be recognized. If an array
variable is specify such as #data[3], it will be substituted as data + "[3]", that
is, it expects non-array variable data to exists and assumes that [3] following
variable data is just a string constant;

Chapter 8: Macro Processor Page: 93

� When experiencing problem with template lines code generation, function getCode
should be used to check the code generated by DVASM� during macro pre-processing.

8.4.3 Concatenation of JavaScript® variables in template lines

When using template lines to generate code, it is sometimes necessary to concatenate
the value in a JavaScript® variable with a constant. For example give the
JavaScript® variable abc whose value must be concatenated with constant xyz, if the
template line contains #abczyx the JavaScript® interpreter will look for the value in
variable abcxyz instead of variable abc. For such cases the dot character ’.’ is used
to indicate concatenation, and the correct coding will be #abc.xyz. If the value of the
variable abc is R1 the resulting generated string will be R1xyz. If the constant being
concatenated is .xyz, the correct coding is abc..xyz and the result will be R1.xyz.

Page: 94

Chapter 9

Output Listing

DVASM� generate output listing in HTML format. The listing can be viewed using any
web browser, by entering the full path name of the listing file prefixed with the string
file://.

The reason for using the HTLM format is that when using a browser the data in the listing
can be shown in a relatively concise form, but that any detail needed by the programmer
is only one click away.

There are several sections in the listing but certain rules apply to all of them.

� When the data length in a field is longer than the width allocated for the same field,
the data is truncated. However, when clicking on the field, the data is expanded to
its full length, and the following data is shifted to the right. Clicking again will
restore that data to its truncated form. When truncated data can be expanded, its
color changes when the mouse cursor is hovering over the data.

� Some lines in the listing can be expanded vertically. These line have a [+] at
the very beginning of the line, and when clicked on it, the line is expanded
vertically to show additional information, and the [+] field change to [-].
When clicking on the [-] field, the expanded lines disappear and the clicked
field change back to [+]. As an alternative to clicking the [+], [-] fields,
the users can right click the line anywhere.

Page: 96

9.1 Header

At the very top of the listing file there is a header composed of several clickable fields:

Reload Reload the listing file being browsed. As an alternative most
browsers will do the same when pushing the F5 key on the
keyboard. This function can be used by developers to view a
new listing after assembling the same source file.

Expand All Ex[and recursively all code generated by macros. To undo this
function, simply reload the listing file.

Statement Listing Scroll vertically to statement listing.

Section Listing Scroll vertically to section listing.

Symbol Listing Scroll vertically to symbol listing.

Relocation Listing Scroll vertically to relocation listing.

DVASM Manual Start a new browser tab to display this manual from the
DVASM� WEB site.

Dark Background This field is a dark square, and when selected, it will display
the listing with a dark background (the default).

Light Background This field is a light square, and when selected, it will display
the listing with a light background.

Print Print the listing file exactly as it appears at the moment of
printing.

Chapter 9: Output Listing Page: 97

9.2 General Information Section

The general information section display the input file name, assembly date and time, and
a log with the sequence of steps the assembler took to generate code.

9.3 Source Code Listing

This section shows the source code and corresponding code generated by each opcode and
its offset.

When clicking on an opcode, the line is expanded to show a detail description of the opcode
and its fields, such as registers and immediates. When clicking on the opcode again, the
details disappear. If the opcode is a macro, the location of the macro is shown.

When the opcode is a macro, the line starts with a [+]. This field can be selected to show
the macro expansion. When the macro code expansion itself contains one or more macros,
each macro can be expanded recursively.

When an opcode is the result of multiple nested macros, the list of macro names, from the
outer to the inner, is shown on the right, following the statement number, with the macro
names separated by the colon character ’:’.

9.4 Sections

This section list all the code section that have been generated with attributes that have
been stored in the ELF file.

Page: 98

9.5 Symbols

This section list all the symbols that have been that have been used in the source code, or
generated by macros. For each symbol all attributes and values are shown, with the name
of the owning code section when applicable.

Each line can be expanded vertically to show where in the code the symbol was defined,
and where it was used.

9.6 Relocations

The relocation section show all symbols that are relocatables, with owning section, external
name, relocation ID and addend value.

Appendix A

Summary of Case Sensitive Rules

This is a short summary of the rules about what is case sensitive and what is not.

Everything in the source code is not case sensitive, and it is internally converted to upper
case. This includes symbols, opcode, directives, macro names, key-word parameter keys,
and symbol qualifiers. For symbols that are external or are exported and are not all upper
case, there is always an option to specify and external name which is case sensitive, when
using the EXTERNAL, EXPORT and COMMON directives.

Everything inside a macro is case sensitive since JavaScript® is a case sensitive
language, with the exception of the macro name in the macro header following the string
//MACRO.

Special care should be paid with macro names. Macro names are mapped to the name
of the file containing them by appending file extension ".mac" to the macro name. In
a file system with file names that are not case sensitive (e.g. MS Windows) there are no
problem.

However, when using a file system with file names that are case sensitive (e.g. Linux,
UNIX, etc.) two file names, spelled the same, but with different cases for each character,
will map into the same macro name. For example consider the case of two macros with file
names Macro.get.mac and Macro.GET.mac and residing in the same directory. When
DVASM� scan the directory, and compares the names in case insensitive mode, it will
detect a duplicate and, it will discard the second one found.

Another area that needs to be clarified is the mapping of a macro key-word parameter into

Page: 99

Page: 100

the corresponding argument in the macro header. If, for example, a key-word parameter
is defined in a macro header as WReg=, the source code invoking the macro can use any
case combination of WReg= such as wreg= or WREG=. However, inside the macro, only the
JavaScript® variable WReg will contain the value passed as a parameter, or its default
value.

	Overview
	Introduction
	DVASM™functionality
	File structure
	Installation
	Executing DVASM™

	The Input File
	Input File Syntax
	Label
	Opcode
	Parameters
	Comments

	Sections and Symbols
	Sections
	MMAPs
	Symbols
	External Symbols

	Expressions
	Constants
	Symbols
	Operators
	Operator Precedence
	Operators and Operands Types

	Relocation Qualifier Restrictions
	Examples
	Absolute Integers
	Displacement Integers
	Base Displacement Integers
	Floating Point
	Strings

	ELF Output Files
	ABI
	Relocatables

	Framework Data Opcodes and Directives
	Data Opcodes
	Word Data Opcodes
	Word Data Opcode Examples
	Unicode Data Opcodes
	Unicode Data Opcode Examples

	Control Directives
	ASSERT Directive
	BASECLEAR Directive
	BASEDROP Directive
	BASESET Directive
	BIGENDIAN Directive
	CNTRES Directive
	CNTSET Directive
	COMMON Directive
	DEFENDIAN Directive
	END Directive
	EQU Directive
	EXPORT Directive
	EXTERNAL Directive
	LITTLEENDIAN Directive
	MMAP Directive
	SECTION Directive
	SETENV Directive
	SETFILE Directive

	Macro Processor
	A simple example
	The Header
	The Code

	The Header
	Header Format
	Header Parameters

	Invoking a Macro
	Execution Environment
	DVASM™Macro Functions
	Generating Code
	Concatenation of JavaScript®variables in template lines

	Output Listing
	Header
	General Information Section
	Source Code Listing
	Sections
	Symbols
	Relocations

	Summary of Case Sensitive Rules

