Da Vinci Assembler

RISC-V

Paolo Roberti

(©) 2021-2023 Roberti & Parau Enterprise, Inc.

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative
Commons, PO Box 1866, Mountain View, CA 94042, USA.

DVASM™ is a trademark of Roberti & Parau Enterprises, Inc.

Page: i1

http://creativecommons.org/licenses/by-nc-nd/4.0/

Contents

IOVEIVIEW - « . o o o o e e e e e e e e e 1
2 Introductionl 3
2.1 Tmplementation| 4

[3 Coding RISC-V Programs|, 7
ol SETENV Directive| 7
[0.2 Memory Access| e e 8
[0.0 Register to Register Machine Instructions| 8
[3.4 The Floating Point Extensions| L. 9
[B.5 The CEXtensionl. oot i ittt e e 10
[3.6 The ALIGN Opcode| e e 11
[3.7 Linkage Support Opcodes| 12
[5.7.1 "Register Save Areas| 13

[0.7.2 Load and Store Conditional Opcodes| 13

[5.7.5 Clearing the Update Flag for all registers| 14

[5.8 Checking for Branch to Branch Condition|. 14

4 MACTOS| o e 15
4.1 The DVASM.getenv Function|. 15
M2 Macro Classification] 16
4.5 Macros Defined in the RISC-V Specifications.|. 17
4.4 Definition Macrosl. oL 17
45 Control Flow Macrosl 17
4.0.1 Branch Condition| 18

452 TF and IF Related Macros|, 21

4.0.8 WHILE and ENDWHILE macros| 28

4.0.4 BREAK and CONTINUE Macrosl 30

455 DO and ENDDO Macros| 33

[4.5.6 Fixing Branch to Branch| 0 L. 35

4.6 Linkage Assist Macros|. 37

4.8.5 BUFFER.COMP Macro 79
4.8.6 BUFFER.COMPPAD Macrol 81
4.9 String Handling Macros|. L 83
............................... 83
............................... 84

Page: v

CONTENTS Page: v

411 Tinked List Macros|. 92
[4.11.I Anchor Mapping Macros| 92
[4.11.2 Anchor Initialization Macros|. 94
[4.11.3 Node Mapping Macros| it 96
[4.11.4 Push Macros|. 97

[4.14.2 Spin Lock Macros|. 134
4.14.3 Load Immediate 32 Bit Constant Macrol 136

Chapter 1

Overview

The Da Vinci Assembler or DVASM™is a set of Java® modules that implements a
multi-architecture assembler framework. Any computer architecture can be supported
by adding an architecture specific module.

When developing the Da Vinci framework module, it was decided to test it by also
developing a module to support the RISC-V architecture, which is now distributed within
the same JAR file as the framework module.

This manual is a reference manual that describes how to code RISC-V programs using the
Da Vinci assembler.

Page: 2

Chapter 2

Introduction

The RISC-V is an open computer architecture that belongs to the RISC family
of architectures. You can find the complete RISC-V ISA specifications at
https://riscv.org/technical/specifications.

In this manual we are going to give a very short summary of the RISC-V ISA specification.

In RISC-V notation, register length is called XLEN. RISC-V support three different XLENS,
XLEN=32,XLEN=64, and XLEN=128. There is also a version for 16 integers registers only.
Optionally there can can exist 32 floating point register which can be 32, 64 or 128 bits
wide and follow IEEE binary floating point standard.

Memory access is little endian.
ISA specifications is divided in basic ISAs and ISA extensions.

There are four ISA basic specifications which are:

e 32 integer registers with XLEN=32. It is named RV32I;
e 16 integer registers with XLEN=32. It is named RV32E;
e 32 integer registers with XLEN=64. it is named RV641;

e 32 integer registers with XLEN=128. it is named RV1287I;

DVASM™ support only the first three. It is important to note that these basic ISAs are

https://riscv.org/technical/specifications

Page: 4

really basic and do not include integer multiply and divide, floating point, control registers,
supervisor instruction, etc.

There are also several extensions and there are provisions for chip designers to add
"private" extensions.

DVASM™ supports all extension that have been 'ratified", which means that everybody
is committed to these extension without the possibility for additional changes. All ISA
extensions that are currently "open", and some that are "frozen" are not supported, but all
of them will be supported when they will become "ratified".

ISA extensions supported by DVASM™ are:

e "M" for integer multiplication and division;
e "A" for atomic instructions;

o "I" for 32 bit floating point instructions;

e "D" for 64 bit floating point instructions;

e "Q" for 128 bit floating point instructions;

e "ZICSR" for control register support;

e "ZIFENCEI" for instruction fetch fence;

e "C" for compressed instructions;

e "S" for supervisor instructions.

2.1 Implementation

DVASM™ RISC-V implementation has followed the opcode naming convention used in the
RISC-V specification with the only difference that opcodes are case insensitive.

Coding of parameters have, in some cases, been extended or modified to enhance flexibility
and consistency.

There are no reserved register names since DVASM™ framework does not provide for such
a feature. However a macro is provided for defining symbols that correspond register
names used in the specifications.

Chapter 2: Introduction Page: 5

All macro listed in the specifications have also been implemented. An additional large
number of macros have been added, from symbolic definition of registers, to function call
linkage support, to algorithm implementation such as in memory sort, several type of
linked list, AVL trees, hashing, etc.

Page: 6

Chapter 3

Coding RISC-V Programs

In this chapter we are going to describe where the DVASM™ coding rules of RISC-V
machine instructions deviates from the coding rules in the ISA specifications.

3.1 SETENYV Directive

As for all architectures supported by DVASM™ | RISC-V architecture is selected inside the
code by using the SETENV directive.

The SETENV directive has four parameters that, for RISC-V, are coded as follows:

Arch. Name

Arch. Options

ABI

0S Name

Must be coded as "RISCV"

It is a string containing the name of the base ISA
name, followed by a colon, and by the list of ISA
extensions used, separated by commas. An example is
"RV64I:a,c,d,m,n,zicsr,zifenceil".

It is a string that contains the name of a valid ABI which must
be compatible with the base ISA used, for example "LP64D".

It is a string containing the name of the Operating System
being used, for example "linux". If you are coding a new
OS, just use the new OS name, and keep in mind that the
name is used only by macros.

Page: 8

This is an example on how to use the SETENV directive and specify the RISC-V
architecture:

//

// We use RISC-V 64 bit arch with extensions normally used for Linux

//
//

SETENV "RISCV", "RV64I:a,c,d,m,n,zicsr,zifencei", "LP64D", "linux"

3.2 Memory Access

RISC-V is a load/store architecture with the addition of an extension for direct memory
atomic machine instruction. All memory access in RISC-V iv via a displacement and a
base register. Index registers are not used.

DVASM™ coding of memory access machine instructions, differs from the ISA coding
specifications. The target register is always the first parameter. The second parameter
contains the displacement and its sub-parameter contains the base register. This is true
for both load and stores, even though, for store machine instructions, the memory address
is the destination and not the source. This convention makes all memory access machine
instructions, including atomic memory operation, consistent.

DVASM™ will also check that the memory displacement parameter is an expression, that
resolves to either an ABSOLUTE INTEGER or a DISPLACEMENT INTEGER. Any other value
type will be rejected as an error, including OFFSET INTEGERsS

In this example, a 32 bit word is loaded from memory location pointed by base register T1
and displacement 16, into register T2. It is than stored back to memory location pointed
by base register T3 and displacement 24 are coded as follows:

BASEDEF // Include register definitions
LW T2, 16 [T1] // Load 32 bit word
Sw T2, 24 [T3] // Store it back

3.3 Register to Register Machine Instructions

In RISC-V most register-to-register operations such as integer and {floating point
arithmetic, bit-wise integer logical operations, etc., use three register parameters. The

Chapter 3: Coding RISC-V Programs Page: 9

first is the destination register, and the following two are the source registers.

When one of the source registers is also the destination register, the coder can specify
only two parameters, the destination register, which is also one of the source register, and
the other source register. For example to add values in register T1 and T2 and store the
result in register T1 the following standard code can be used:

BASEDEF // Include register definitions
ADD T1, Ta, T2 // Add two integers - standard way

or the short way as follows:

BASEDEF // Include register definitions
ADD T1, T2 // Add two integers - short way

The same applies to four register format opcodes. For this format the first register is the
destination register and the following three registers are the source registers. When the
opcode is encoded with three registers only, instead of four, the third source register (i.e.
the missing register) is internally set to the destination register.

In this example the FMADD.D floating point opcode instructs the CPU to multiply the first
two source registers, add the result to the third source register, and store the final result
in the destination register, all using 64 bits floating point registers. The standard way to
code FMADD.D is:

BASEDEF // Include register definitions
FMADD F12, F21, F22, F12 // Mult-add doubles - standard way

while the short way is:

BASEDEF // Include register definitions
FMADD Fi12, F21, F22 // Mult-add doubles - short way

3.4 The Floating Point Extensions
RISC-V defines three floating point extensions: 32 bit, 64 bit and 128 bit wide. All operations
follow IEEE floating point standards.

For most floating point operation, RISC-V provides 3 bit in the opcode encoding, called the
rounding mode, whose setting control the rounding of the result.

Page: 10

DVASM™ allows the coder to specify rounding mode, by providing a key-word parameter
RM=. The default value for this parameter is ®b111 which instruct the CPU to use the
default rounding mode set in the corresponding control registers. When other setting
must be used, the coder can override the default by using RM=.

RISC-V macro BASEDEF containig mnemonic definition for all valid rounding modes
supported.

Here is a simple example:

//
BASEDEF // Include definitions
//
FMULT.D Fa2, Fa3, Fi4 // Multiply using control register
// setting for rounding
//

FMULT.D F12, F13, F14, RM=RM_RNE
// Multiply and round to nearest
// as defined in BASEDEF macro

3.5 The C Extension

The RISC-V C extension allows the coder to use machines instructions which are encode
into two byte length instead of the standard four bytes. This allows to generate shorter
code. The RISC-V specification define all opcodes in the C extension to end with the suffix
".C". When the C extensions is specified in the SETENV directive, DVASM™ does not allow
the coder to target C extension opcodes directly. Instead, it automatically convert standard
four byte length opcodes to two byte length opcodes whenever a corresponding two byte
length opcode is available. This action can be blocked by using the C.SUSPEND directive.

When the C extension is specified in the SETENV the conversion of standard opcodes to C
extension opcodes is enabled by default. The coder can suspend or resume automatic
conversion using the two directives C.SUSPEND and C.RESUME. When the directive
C.SUSPEND is used, no automatic conversion takes place from that statement onward,
until a C.RESUME directive is encountered, in which case, automatic conversion is resumed
from that statement onward. Multiple alternating C.SUSPEND and C.RESUME can be used
within the same source code.

Chapter 3: Coding RISC-V Programs Page: 11

In this example the C extension is enable just for a short loop code, to make sure that the
whole loop fits in one or two cache lines:

//

SETENV "RISCV", "RV64I:a,c,d,m,n,zicsr,zifencei", "LP64D", "linux"
// // RISC-V with C extension
// C.SUSPEND // Disable C extension
//
//
// Insert here code before loop
//

C.RESUME // Enable C extension
//

WHILE // Start loop
//
// Insert loop code here
//

WHILEEND // End of loop

//

C.SUSPEND // Suspend C extension again
//
// Insert code following loop here
//

3.6 The ALIGN Opcode

The ALIGN opcode is a special opcode used to align a machine instruction to the specified
alignment values. The ALIGN opcode should be used only to align binary code. To align
data, a data opcode with zero length and desired alignment should be used instead of the
ALIGN opcode.

The ALIGN opcode generate a sequence of no-operation machine instructions, called a
no-operation slide, so that the slide ends at an offset at the specified alignment. The
alignment value must be a power of two, the lowest value being 4 and the highest value
being 512.

The opcode also support a key-word parameter BRCOND=, which is used to generate a
unconditional branch to the slide end, if the slide is too long. When the number of
no-operation machine instructions in the slide exceeds the number specified in BRCOND=
the branch is generated. When the value of BRCOND= is 0, which is the default, no branch
is generated regardless of the slide length.

Page: 12

In the following example, a small, CPU intensive loop is expected to run on a chip, with
level 1 cache lines that are 64 byte long. ALIGN opcode is used to align the loop on 64 byte
boundary. The C.RESUME directive is used to shorten the loop binary, so that it fits in as
few cache lines as possible. The directive C.SUSPEND is used after the loop to generate 4
byte long machine instruction only, and it is preceded by the ALIGN opcode to force 4 byte
alignment.

//
SETENV "RISCV", "RV64I:a,c,d,m,n,zicsr,zifencei", "LP64D", "linux"
// // RISC-V with C extension
// C.SUSPEND // Disable C extension
//
//
// Insert here code before loop
//
ALIGN 64, BRCOND=8 // Align loop on
// // cache line boundary
// // Force a branch if the no-op
// // slide is longer than 8 no-ops
C.RESUME // Enable C extension
//
WHILE // Start loop
//
// Insert loop code here
//
WHILEEND // End of loop
//
ALIGN 4 // Force code to align
// on 4 byte boundary
C.SUSPEND // Suspend C extension again
//
// Insert code following loop here
//

3.7 Linkage Support Opcodes

DVASM™ RISC-V module provides three data opcodes, and the key-word parameter COND=
for some load and store opcodes to assists coders in saving, at entry, and restoring, at exit,
only registers that are being modified within the code. These are specialized extensions
that are intended to be used within macros that generate entry code, exit code, and map
the entry stack. See the ENTRY macro on page [55] the EXIT macro on page [58 and the
STACK macro on page [59, on how these extension can be used.

Chapter 3: Coding RISC-V Programs Page: 13

3.7.1 Register Save Areas

Two data opcodes are provided to create save areas for register being updated in the code.

Opcode REGSAVE create a word in storage of length XLEN. If the target register being
targeted is not being updated in the code, no storage area is created.

Opcode FREGSAVE does the same for floating point registers, except that the storage length
can be 32, 64 or 128 bits, depending on the floating point extension being specified in the
SETENV directive.

Opcodes REGSAVE and FREGSAVE should be used, for example, when mapping the register
save area within a stack of a function being called using the standard ABI.

3.7.2 Load and Store Conditional Opcodes

The following load and store opcodes have a key-word parameter COND=. When set to 0, the
default, DVASM™ always generates code for the opcode. When set to 1, DVASM™ generates
code only if the target register is being updated within the code. The opcodes are:

LW Load a 4 byte word into integer register.

Sw Store a 4 byte word from integer register.

LD Load a 8 byte word into integer register.

SD Store a 8 byte word from integer register.

FLW Load a 4 byte word into floating point register.
FSw Store a 4 byte word from floating point register.
FLD Load a 8 byte word into floating point register.
FSD Store a 8 byte word from floating point register.
FLQ Load a 16 byte word into floating point register.
SLQ Store a 16 byte word from floating point register.

The key-word parameter COND= is intended to be mainly used when saving registers when
entering a function and restoring registers when exiting.

Page: 14

3.7.3 C(learing the Update Flag for all registers

DVASM™ keeps track of registers being updated by having a boolean variable for each
register. When more that one function is coded in the same source file, there is a need
to clear these variables in between the two functions. This is achieved by using the
CLRREGFLAGS directive, which has no parameters.

3.8 Checking for Branch to Branch Condition

Sometimes when using control flow macros that implement IF, ELSE, ENDIF, etc., the
code generated, under certain conditions, contains conditional branches to unconditional
branches. DVASM™ , after generating the binary, inspects the code, and whenever it
detects a conditional branch to an unconditional branch, it issue a warning for the
conditional branch statement. However, DVASM™ will not try to optimize the code. That is
the responsibility of the coder.

Chapter 4

Macros

DVASM™ RISC-V module comes with set of macros. These macros are intended to help
coder write shorter and better code.

4.1 The DVASM.getenv Function

As described in the DVASM™ framework manual, the JavaScript® DVASM.getenv
function can be used by macros to get environmental data. The function returns an
array of strings of size 5. The first 4 strings contain the same exact values passed
to the SETENV directive. The fifth string is architecture dependent, and it contains a
set of JavaScript® assignments, semicolon separated, that assign values to predefined
variables. This string is intended to be the target of the JavaScript® eval function, as
in the following example:

eval(DVASM.getenv()[4]);

The following variable and its associated values are set:

Variable Name Value

abiNoRegs Number of general purpose registers, either 16 or 32
abiNoFRegs Number of floating point registers, either O or 32
abiXLen Size of general purpose registers in bits, either 32 or 64

abiFLen Size of floating point registers in bits, either 32, 64 or 128

Page: 16

abiWLen Size of general purpose registers in bytes, either 4 or 8

abiFWLen Size of floating point registers in bytes, either 4, 8 or 16

abiwiD Suffix to be used for machine instructions based on general
purpose register size, either "W’, for 32 bits, or "D’ for 64
bits

abiFWID Suffix to be used for machine instructions based on floating

point register size, either 'S’, for 32 bits, "D’ for 64 bits, or
'Q’ for 128 bits

4.2 Macro Classification

The macros can be divided in the following categories:

e Macros defined in the RISC-V specifications;
e Symbol definition;

e Control flow;

e Linkage assist;

e Fxternal symbols access;
e Buffer handling;

e String handling;

e Heap sort;

e Linked lists;

e AVL trees;

e Hashing;

e Miscellaneous.

All these macros provide enough functionality to allow anybody to write a small OS kernel
with ease.

Chapter 4: Macros Page: 17

4.3 Macros Defined in the RISC-V Specifications.

RISC-V specifications define several macros, such as LA, LI, etc., that complement the ISA
specifications. DVASM™ implementation of these macros follow the RISC-V specification,
and thus, are not documented here. Please refer to the RISC-V specification documents for
more information.

4.4 Definition Macros

There is only one definition macro. The name of the macro is BASEDEF. It defines
mnemonics for integer registers, floating points registers, floating point rounding
modes and control registers. BASEDEF also invokes the framework definition macro
FRAMEWORKDEF. The macro expansion of BASEDEF, in the listing, will show all the
definitions in details.

4.5 Control Flow Macros

A set of macros is provided to allow coder to use structured programming constructs,
such as IF, ELSE, ENDIF, etc.. These macros should be used together. Beside helping the
coder with structured programming, these macros take advantage of DVASM™ indentation
interface so that a program using these macros will be shown with the correct indentation
in the output listing.

These are the control flow macros:

o IF
e ANDIF

ELSEIF

e ELSE

ENDIF

WHILE

ENDWHILE

Page: 18

e DO
e ENDDO
e BREAK

e CONTINUE

4.5.1 Branch Condition

In some of the control flow macros a condition (i.e. a Boolean expression) is either required
or optional. The condition control the code execution. For example, if at execution time,
the condition of the IF macro is true, the next machine instruction following the macro
will be executed, otherwise a branch will be taken to the following ELSE, ELSEIF or ENDIF
macro whichever comes first after the IF macro.

For macros IF, ANDIF, and ELSEIF, a condition is always required and it is the first
positional parameter. For macros WHILE and ENDWHILE, a condition is optional, and it is
specified as the key-word parameter CONDITION= which is defaulted to a null string.

The format of a condition is as follows:

e The condition parameter is a string;
e A condition contains comparisons of integer or floating point registers only;

e Comparison format is Register_1 comparison_operator Register_2;

e Comparison operators are expressed as '==", "1=" "<=" ">=" "<’ and '>';

e Comparison operators can be qualified. When not qualified they indicated signed
integer comparison. When they are qualified by {U} they indicate an unsigned

integer comparison (only for '>=", "<='", '>" and '<'). When they are qualified
by {F}, {D} or {Q} they indicate respectively 32 bit, 64 bit or 128 bit floating point
comparison;

e More that one comparison can be specified using the Boolean operators "&&" for short
circuit AND and " | |"” for short circuit OR;

e Nested round parenthesis are supported.

Chapter 4: Macros Page: 19

Whenever a condition is specified, two additional key-word parameters, WReg= and Far=,
are available.

Parameter WReg= defaults to a null string, but must specify an integer work register when
the condition includes comparison of floating point registers. The reason is that RISC-V
ISA handle comparisons of floating point registers differently from integer registers.
When comparing integer registers comparison and branching takes place in a single
machine instruction. Instead when comparing two floating point registers, RISC-V sets an
integer work register either to one, when true, or zero, when false. Branching is done by
comparing the integer work register to register zero which is hardwired as binary zero.

Parameter Far= is a Boolean parameter and is defaulted to FALSE or NO. It should be set
to TRUE or YES when the largest displacement of the conditional branch is larger than the
maximum +/- 4096 bytes. In this case the macros generate two machine instructions: A
conditional branch around the following unconditional branch with a 20 bit displacement.

It is a good practice to always enclose the condition string in either in round parenthesis or
quotes. For example condition R16==R11 should be coded as (R16==R11) or ! "R16==R11".
In fact if R16==R11 alone is used, the parser will interpret the first four characters R16=
as key-word parameter.

Following are some examples. Test if register R2 is bigger than register R3:

(R2 > R3)
Test if register R2 is bigger than register R3 and R4 less equal register R5:

(R2 > R3 65 R4 <= R5)
Test if register F2 is bigger than register F3 using 64 bit floating point comparison and
if R4 is less equal register R5. Use R10 as work register to execute the floating point
comparison:

(F2 {D}> F3 &5 R4 <= R5), WReg=R10

Test if either register R2 is bigger than register R3 and if R4 is less equal register R5 or
register R8 is greater than R9 using unsigned integer comparison:

((R2 >R3 65 Rt <= R5) || R8 {U}> {Ro})

Page: 20

Test if register R2 is bigger than register R3 and specify that the branch generated is to
a out of range label.

(R2 > R3), Far= YES

Chapter 4: Macros Page: 21

4.5.2 1IF and IF Related Macros

The IF macro is used to execute the action specified depending if the condition specified
is true or false at execution time.

Sombmmmm - D R e >
I I
+--Label--+

>------ condition,----- Fommmmmmmmm—m oo e i tommmm - >

+--WReg=register,--+ +--Far=Boolean,--+

S--------- +--THEN-------------------- oo m oo ——— o —- - ><
| I
+--G0TO,------ ID=label----- +
| |
+--BREAK----- tomm o —- - +

I I I
| +-,-ID=1label--+
I I
+==CONTINUE--+-----------~- +

I I
+-,-ID=1label--+
Label Optional
Name IF
Pos. Parameters
condition Branch condition (see page [I8).

Key-word Parameters

WReg Condition work register (see page [I§).
Far Boolean, to specify far branches (see page [IS).
ID Branch target when GOTO, BREAK or CONTINUED is used.

When the THEN action is specified the IF macro starts a IF ... ENDIF sequence. If
the condition is true at execution time, statements following the IF macro are executed,
otherwise a branch is taken to the next ELSE, ELSEIF or ENDIF macro, whichever comes
first.

Page: 22

When the GOTO action is specified the IF macro becomes a direct branch to the label
specified with the ID= key-word parameter if the condition is true at execution time.

When the BREAK action is specified, and the condition is true at execution time, the IF
macro break out of the inner-most WHILE loop, or DO block. The key-word parameter ID=
can be used to specify the label of an outer loop or block instead.

When the CONTINUE action is specified, and the condition is true at execution time, the IF
macro reiterate the inner-most WHILE loop or DO block. The key-word parameter ID= can
be used to specify the label of an outer loop or block instead.

Chapter 4: Macros Page: 23
The ENDIF macro terminate an IF clause macro.
Semtmmmmmm e #mm mENDIF === === m == = e e e e e e e e e ><
I I
+--Label--+
Label Optional
Name ENDIF

Pos. Parameters
None
Key-word Parameters

None

Page: 24

The ANDIF macro is code as follows:

P L e +---ANDIF----- condition-------===-----—----“---oo >

I I
+--Label--+

+--WReg=register,--+ +--Far=Boolean,--+

Label Optional
Name ANDIF
Pos. Parameters
condition Branch condition (see page [I8).
Key-word Parameters
WReg Condition work register (see page [I§).

Far Boolean, to specify far branches (see page [IS).

If the condition at execution time is true, the statements following the macro are executed,
otherwise a branch is taken to the next ELSEIF, ELSE or ENDIF macro, whichever comes
first. The ANDIF macro must reside inside a IF clause, and does not start a new IF clause.

Chapter 4: Macros Page: 25
The ELSEIF macro is coded as follows:
Semtmmmmmm e #===ELSEIF-=-#mmmmmmmmm e oo bmmmm e >
I I I I
+--Label--+ +--PreCode=[precode_statements]--+
So--------- Condition,--#------------------ e i tommm---- ><
I | |
+--WReg=register,--+ +--Far=Boolean,--+
Label Optional
Name ELSEIF

Pos. Parameters
condition
Key-word Parameters

PreCode

WReg

Far

Branch condition (see page [I8).

List of strings, where each string contains an assembler

statement to be executed before testing the condition.

Condition work register (see page [I§).

Boolean, to specify far branches (see page [I§).

The ELSEIF macro is the branch target of an IF, ANDIF or ELSEIF macro within

the same IF clause, when the condition is false at execution time.

The macro has a

key-word parameter PreCode= which is a string list containing assembly statements.

This statements are executed before the condition is tested for branching. If the condition

at execution time is true, the statements following the macro are executed, otherwise a
branch is taken to the next ELSE, ELSEIF or ENDIF macro, whichever comes first.

Page: 26

The ELSE macro is coded as follows:

S-—dmmmmmmm o #m = mELSE == m = m m e ><
I I
+--Label--+

Label Optional

Name ELSE

Pos. Parameters
None
Key-word Parameters

None

The ELSE macro is the branch target of an IF, ANDIF or ELSEIF macro when the condition

is false at execution time. The ELSE macro must be the last macro of the same IF clause
before the ENDIF macro.

Chapter 4: Macros Page: 27

This is an example on how to use control flow macros in a IF clause:

//
// BASEDEF // Include definitions
//
IF (R2 > R3), THEN // Start IF clause
//
// Next statement executed if R2 > R3
//
IF (R5 == R6), THEN // Nested IF clause
//
// Statements here are executed if
// R2 > R3 §5 R5 == R6
//
ENDIF // End of nested IF clause
//
//
ANDIF (R3 < R4) // One more condition
// for outer IF clause
//
// Statements here are executed if R2 > R3 &§5 R3 < R4
//
ELSEIF PreCode= /> Load constant 16 for
[LI Rie, 16"] /> condition comparison
(R5 == R10) // Condition Rs == 16
//
// Statements here are executed if
// (R2 <= R3) || R3 >> R4) 8§ R5 == 16 (constant)
//
ELSE // Last macro before ENDIF
// within same IF clause
//
// Statements following ELSE are executed if
// (R2<=R3) |l R3 > R4) &8
// Rs5 != 16 (constant)
//

ENDIF // End of IF clause
//

Page: 28

4.5.3 WHILE and ENDWHILE macros

The WHILE macro is used to start a loop.

Dot mmmmm e #+=-==-WHILE---4----------ccmmm e e e e e - $---——- >
l——Label——l l——RepeatCode=[repeatcode_statements],——l

D et e +-><
l——Condition=condition——+ —————————————————— R +——l

| (. |
+-,-WReg=register--+ +-,-Far=Boolean--+
Label Optional
Name WHILE
Pos. Parameters
None

Key-word Parameters

condition Condition tested to check if to continue the loop (see page [[§).

RepeatCode List of strings, where each string contains an assembler
statement to be executed at every iteration before testing the
condition.

WReg Condition work register (see page [I§).

Far Boolean, to specify far branches (see page [[S).

The condition is tested the first time the loop is entered, and every time the loop is executed
thereafter. When condition is not specified, this is equivalent to an infinite loop that can
be exited via the BREAK macro, ITF with the BREAK action or the ENDWHILE macro with a
condition.

The RepatCode= key-word parameter is a string array that contains assembly statements
to be executed at each iteration of the loop, except when entering the loop for the first
time. The RepeatCode parameter can be used to code a loop functionally equivalent to
the for loop in the C language.

Chapter 4: Macros Page: 29

The ENDWHILE macro ends a while loop started with macro WHILE.

Sombmmmm - # === ENDWHILE - === === === === m m oo e e >
l-—Label--l

R e et +-><
l--Condition=condition—-+ —————————————————— R +—-l

l—,—WReg=register——l l—,—Far=Boolean——l
Label Optional
Name ENDWHILE
Pos. Parameters
None
Key-word Parameters

condition Condition tested to check if to continue the loop (see page [[§).
assembler statement to be executed at every iteration before
testing the condition.

WReg Condition work register (see page [I§).

Far Boolean, to specify far branches (see page [IS).

When the condition is true at execution time, the loop is exited. When condition is false,
or is not specified the loop is iterated.

Page: 30

4.5.4 BREAK and CONTINUE Macros

Macro BREAK can be used to unconditionally break out of the inner-most WHILE loop or DO
block.

St ——— +---BREAK----- Fommmmm - ——— e ><
I I I I
+--Label--+ +--ID=Tlabel--+
Label Optional
Name BREAK

Pos. Parameters
None
Key-word Parameters

ID Label of an outer WHILE loop or DO block, to be the target of
BREAK.

When there is a need to break out of a loop or block that is not the inner-most, the ID=
key-word parameter can be used to specified the label of the loop or block being target for
break-out.

Chapter 4: Macros Page: 31

Macro CONTINUE can be used to unconditionally iterate the inner-most WHILE loop or DO
block.

D +---CONTINUE--+------------ e ><
I I I I
+--Label--+ +--ID=1label--+
Label Optional
Name BREAK

Pos. Parameters
None
Key-word Parameters

ID Label of an outer WHILE loop or DO block, to be the target of
CONTINUE.

When there is a need to iterate a loop or block that is not the inner-most, the ID= key-word
parameter can be used to specified the label of the loop or block being iterated.

Page: 32

This is an example of a WHILE loop using both the BREAK and CONTINUE macro:

//
/!
/!
//
//
//
//
//
//

//
//
//

//
//
//

//
/!
//

//

This example shows how to code the equivalent of C code

for (int i= o; 1 < 256; i++)

also using break and continue

BASEDEF
LI To, o
LT T1, 256
WHILE
RepeatCode=[1!" ADDI

Condition= (Te < T1)
Statements here
IF (T3 > T4), BREAK
More statements
IF (T3 <= T5), CONTINUE
More statements

ENDWHILE

//

//
//
/>

//

//

//

//

Include definitions

Set index register to zero
Load upper bound of loop

To, 1"]1 />
Same as C for loop

Break out on condition

Iterate loop on condition

End of loop

Chapter 4: Macros Page: 33

4.5.5 DO and ENDDO Macros

The DO and ENDDO macros can be used to create a block of code that can be the target of
CONTINUE and BREAK macros.

The DO macro starts a DO block:

So—dmmmmmmoo-) et e et e T L T T ><
I I
+--Label--+
Label Optional
Name DO

Pos. Parameters
None
Key-word Parameters

None

Page: 34

The ENDDO macro ends a DO block:

I I

+--Label--+
Label Optional
Name ENDDO

Pos. Parameters
None
Key-word Parameters

None

Chapter 4: Macros

Page: 35

4.5.6 Fixing Branch to Branch

When using control flow macros, it can happen that the macros generate conditional
branches to unconditional branches. This is a typical example:

//
//
//

//
//
//

//
//
//

//

//
//
//

//

BASEDEF
IF (R2 > R3), THEN
Statements here

IF (Rs == R6), THEN

Statements here
ENDIF

ELSE

Statements here

ENDIF

//

//
//
//
//
//

//

//

Include definitions

Outer IF clause

If condition is false
Code branch to unconditional
branch of ELSE

End of nested IF clause

First machine instruction
of ELSE 1is unconditional
branch to ENDIF

It is also the target of
a conditional branch in
the IF macro

End of IF clause

DVASM™ RISC-V module check for these instances, and issues a warning for each

statement with a conditional branch to an unconditional branch.

Page: 36

It is up to the coder to fix the code for optimal performance. Normally this is achieved
by the use of a DO block in conjunction with the BREAK macro. This is how the previous
example can be re-coded for optimal performance:

//
// BASEDEF // Include definitions
//
DO // Start DO block

IF (R2 > R3), THEN // Outer IF clause
//
// Statements here
//

IF (Rs !'= R6), BREAK // Test for negated condition
// If condition is true
// break out of the DO block

//
// Statements here
//

ELSE
//
// Statements here
//

ENDIF // End of IF clause
ENDDO // End of DO block

//

Chapter 4: Macros Page: 37

4.6 Linkage Assist Macros

Several macros are provided to generate code to transfer execution to an entry point just
like in a C function call or tail call. Macros starting with CALL.* implement several
flavors of function calls, where a return from the target entry point is expected. Macros
starting with TAIL.* implement several flavors of tail calls, where a return from the
target entry point is not expected.

4.6.1 Common Parameters

CALL.+* and TAIL.* macros share the following common parameters:

EP Positional: It indicates the entry point symbol to which
execution will be transferred. Typically EP is an external
symbol. This parameter is used by all CALL.* and TAIL.=*
macros except for CALL.REG.

Reg Positional: It indicates the register containing the full address
of the entry point to which execution will be transferred. This
parameter is used only by CALL.REG.

ARG= Keyword: It is a list containing the name of the arguments
passed during the call. It is defaulted to an empty list []. See
below for a detailed description. This parameter is used by all
CALL.* and TAIL.* macros except for CALL.PRIME.

SaveReg= Keyword: It is a list containing the the name of the registers
that must be saved and restored before and after the transfer
to the entry point. It is defaulted to an empty list. This
parameter is only used by all CALL.* macros with the
exception of CALL.PRIME. When using this parameter only
temporary registers should be specified in the list, since,
according to the ABI, non-temporary registers must be saved
and restored by the callee when being modified.

SaveFReg= Keyword: It is a list containing the the name of the floating
point registers that must be saved and restored before and
after the transfer to the entry point. It is defaulted to an empty
list []. This parameter is used by all CALL.* macros except
for CALL.PRIME. When using this parameter only temporary

Page: 38

registers should be specified in the list, since according to the
ABI, non-temporary registers must be saved by the callee when
modified, and restored upon return.

Stack= Keyword: It specifies a symbol, typically an MMAP, that
indicates the start of the stack. It is defaulted to the null string
(i.e. no stack used). This parameter is used by all CALL.* and
TAIL.* macros except for CALL.PRIME. This parameter must
be specified when requesting to save registers, or when the
parameter list does not fit in the parameter registers.

Passing arguments in the RISC-V architecture is done by using argument registers (i.e.
AO, Al, etc.). When there are more arguments than argument registers, the overflowing
arguments are stored at the bottom of the stack. Either way each argument must be
loaded in the appropriate A type register and, for an overflowing argument, must be stored
at the bottom of the stack. The same convention is followed when passing arguments that
are floating point numbers, with the only difference being that floating point argument
registers are used.

Each item in the ARG= argument list contains two words. The first word is the opcode
used to load the argument into the argument register, and the second word is the opcode
parameter indicating the source of the argument. The opcode is enclosed in curly brackets,
and when the opcode start with the "I’ character, it is assumed that the argument is a
floating point number.

For example if a call to a C function requires two arguments currently in registers S3 and
S5, the coding for the arguments will look like:

ARG=[{ADDI} o[S3}, {ADDI} o[Ss]]
and the code generated by the macro to set the argument will look like:

ADDI Ao, o[S3] // Load first argument
ADDI A1, o[Ss5] // Load second argument

Note that the macro decides what A type register to use for each argument.

Since most of the time arguments are already loaded in some registers, when the opcode
is not specified for an argument, it is defaulted to ADDI, so that the previous example can
be re-coded as:

ARG=[o[S3}, o[S5]]

Chapter 4: Macros Page: 39

to generate the same exact code.

Page: 40

4.6.2 CALL.FAR Macro

The CALL.FAR macro is used to branch to an entry whose relative offset from the branch
code must be within +/- 2 gigabytes. It is the preferred CALL macro when branching to a
an entry which is part of the executable. In this case it generates assembly code that is
PIC (Position Independent Code). However if the entry sits in a dynamic library, the code
generated is not PIC.

>mmdmmmmmme - #====CALL . FAR=== =P == == o = o oo oo e e >

I I
+--Label--+

Demmmm e = L L e R s >

I I I
+--,-ARG=Arglist--+ +--,-SaveReg=SaveReglList--+

+--,-SaveFReg=SaveFRegList--+ +--,-Stack=StackSymbol--+

Label Optional
Name CALL.FAR
Pos. Parameters
EP Entry point symbol.

Key-word Parameters

ARG List of arguments (see page [37).

SaveReg List of registers to be saved/restored (see page [37).

SaveFReg List of floating point registers to be saved/restored (see page
[B7).

Stack Symbol indicating the start of the stack being used (see page

[37).

Chapter 4: Macros Page: 41

In the following example the printf function is called to print the number stored in
register S4 using a format string:

//
// Base register Se is set as base register to the code
// to address constants such as Fmt

EXTERNAL printf
CALL.FAR printf, ARG=[{LA} Fmt, o[Ssz] 1, />
SaveReg=[Te-4], Stack= myStack

Fmt UTFS8 "The number is: %ld\n\ueceo"

Note that the macro will save and restore registers Te, T1, T2, T3, and T4 before and
after the call. Also the object generated will not be PIC if the C function printf is in a
dynamic library and is not statically linked in the executable.

Page: 42

4.6.3 CALL.NEAR Macro

The CALL.NEAR is the same as CALL.FAR, except that the entry point relative offset must
be not more than +/- 1 megabyte. It should only be used when the entry point is part of
the executable, and the executable itself is not larger than 1 megabyte. In this case it
generates code that is PIC (Position Independent Code). If the executable is larger than 1
megabyte, special instructions should be given to the binder, so that the CALL.NEAR code
and the target entry point are as close as possible in the final executable. CALL.NEAR
should never be used when the entry point belongs to a dynamic library since there is
very high probability that the entry point will be out of range at load time.

The CALL.NEAR macro is coded as follows:

>embmmmmmm e #====CALL .NEAR===EP == === = = oo o o e e e e e >

I I
+--Label--+

+--,-ARG=Arglist--+ +--,-SaveReg=SaveReglList--+

+--,-SaveFReg=SaveFReglList--+ +--,-Stack=StackSymbol--+

Label Optional
Name CALL.NEAR

Pos. Parameters

EP Entry point symbol.
Key-word Parameters
ARG List of arguments (see page [37).
SaveReg List of registers to be saved/restored (see page [37).
SaveFReg List of floating point registers to be saved/restored (see page
[37).
Stack Symbol indicating the start of the stack being used (see page

B7).

Chapter 4: Macros Page: 43

464 CALL.LCL Macro

The CALL.LCL macro is the same as the CALL.NEAR, except that the target entry point is
a local symbol in the current source code.

The CALL.LCL macro is coded as follows:

>mbmmmmm o #====CALL . LCL====EP= === = m = mm oo e e >

| |
+--Label--+

+--,-ARG=Arglist--+ +--,-SaveReg=SaveReglList--+

+--,-SaveFReg=SaveFReglList--+ +--,-Stack=StackSymbol--+

Label Optional
Name CALL.LCL
Pos. Parameters
EP Entry point symbol.

Key-word Parameters

ARG List of arguments (see page [37).

SaveReg List of registers to be saved/restored (see page [37).

SaveFReg List of floating point registers to be saved/restored (see page
[37).

Stack Symbol indicating the start of the stack being used (see page

B7).

Page: 44

4.6.5 CALL.GOT Macro

The CALL.GOT macro is used to branch to an entry without any limit to the relative offset
from the branch code to the entry point. It always generates PIC code, but cannot be used
when coding boot loaders or kernels since no loader is available to create the GOT at boot
time.

The CALL.GOT macro is coded as follows:

>mdmmmmm e #====CALL . GOT === =P === === == = oo e >

I I
+--Label--+

+--,-ARG=Arglist--+ +--,-SaveReg=SaveReglList--+

+--,-SaveFReg=SaveFReglList--+ +--,-Stack=StackSymbol--+

Label Optional
Name CALL.GOT
Pos. Parameters
EP Entry point symbol.

Key-word Parameters

ARG List of arguments (see page [37).

SaveReg List of registers to be saved/restored (see page [37).

SaveFReg List of floating point registers to be saved/restored (see page
[37).

Stack Symbol indicating the start of the stack being used (see page

[37).

Chapter 4: Macros Page:

45

This is the CALL.FAR example using CALL.GOT:

//
// Base register Se is set as base register to the code
// to address constants such as Fmt

EXTERNAL printf

CALL.GOT printf, ARG=[{LA} Fmt, o[Ss4] 1, />
SaveReg=[Te-4], Stack= myStack

Fmt UTFS8 "The number is: %ld\n\uceee"

Page: 46

4.6.6 CALL.PRIME and CALL.FAST Macros

The CALL.PRIME and CALL.FAST macros are an optimized version of the CALL.FAR macro,
to be used when calling the the same entry multiple time within the same code, for
example in a loop. When using the CALL.FAR macro two immediate machine instructions
are used. The first load the high 20 bits of the relative address, and the second branch to
the entry point by filling the missing low 12 bits, for a total 32 bits relative address. When
using the CALL.PRIME the high 20 bits are loaded. Later, when using the CALL.FAST
macro, the low 12 bits are added to the register used in the CALL.PRIME macro to
generate the branch address. The use of CALL.PRIME and CALL.FAST saves one machine
instruction, when calling the entry point repeatedly, as in a loop.

The CALL.PRIME macro is coded as follows:

>--PrimelLabel ----CALL.PRIME----EP,----PrimeReg--------------------——-—-- ><
Label Required
Name CALL.PRIME

Pos. Parameters

EP Entry point symbol.
PrimeReg Register holding the partial address of entry point, upon
completion.

Key-word Parameters

None

Chapter 4: Macros Page: 47

The CALL.FAST macro is coded as follows:

P LT +----CALL.FAST---PrimelLabel,---PrimeReg-------------------- >
I I
+--Label--+

+--,-ARG=Arglist--+ +--,-SaveReg=SaveReglList--+

+--,-SaveFReg=SaveFReglList--+ +--,-Stack=StackSymbol--+

Label Optional
Name CALL.FAST

Pos. Parameters

PrimelLabel Name of label used for CALL.PRIME macro.
PrimeReg Register holding the partial address of symbol targeted by this
call.

Key-word Parameters

ARG List of arguments (see page [37).

SaveReg List of registers to be saved/restored (see page [37).

SaveFReg List of floating point registers to be saved/restored (see page
[37).

Stack Symbol indicating the start of the stack being used (see page
B7).

where PrimeLabel is the symbol used as label for the corresponding CALL.PRIME macro,
and PrimeReg is the register used to load the high 20 bits in the CALL.PRIME macro.

Page: 48

In the following example the C library function rand() is called multiple times using
CALL.PRIME and CALL.FAST.

EXTERNAL rand
//
// Random function has already be initialized using srand function
!/
randPrime CALL.PRIME rand, S4 // Set S4 to high 20 bits
// of rand() relative offset

//
LI S3, 100 // Load number of random numbers
LI S2, 0 // Load iteration counter

//
WHILE (S2 < S3)

CALL.FAST randPrime, S4, Stack=myStack

// Get random number in Ao
ADDI S2, 1 // Increment counter
ENDWHILE

Chapter 4: Macros Page: 49

4.6.7 CALL.REG Macro

The CALL.REG macro work like the CALL.FAR macro except that the entry point address
is passed in a register. This macro always generate PIC object code.

N REEEEEEEE #----CALL.REG----R@g---------======oooooo__ >
| |
+--Label--+

+--,-ARG=Arglist--+ +--,-SaveReg=SaveReglList--+

+--,-SaveFReg=SaveFReglList--+ +--,-Stack=StackSymbol--+

Label Optional
Name CALL.REG

Pos. Parameters

Reg Register holding the address of symbol targeted by this call.
Key-word Parameters
ARG List of arguments (see page [37).
SaveReg List of registers to be saved/restored (see page [37).
SaveFReg List of floating point registers to be saved/restored (see page
[37).
Stack Symbol indicating the start of the stack being used (see page

B7.

Page: 50

In the following example the C library function rand() is called multiple times using
CALL.REG. Function rand address is first loaded using macro LA.GOT:

EXTERNAL rand

//
// Random function has already be initialized using srand function
//
LA.GOT S4, rand // Load rand entry point address
//
LI S3, 100 // Load number of random numbers
LI S2, © // Load iteration counter
//
WHILE (S2 < S3)

CALL.REG S4, Stack= myStack

// Get random number in Ae
ADDI S2, 1 // Increment counter
ENDWHILE

Chapter 4: Macros Page: 51

4.6.8 TAIL.FAR Macro

The TAIL.FAR macro is used to tail branch to an entry point whose relative offset from
the branch code must be within +/- 2 gigabytes. It is the preferred TAIL macro when
branching to a an entry which is part of the executable. In this case it generates code
that is PIC (Position Independent Code). However if the entry sits in a dynamic library,
the code generated is not PIC.

>mmtmmmmmme - #====TATL . FAR====FP, == === == = o o e oo e e e >

I I
+--Label--+

D L L R +--=-><

I I I
+--,-ARG=ArglList--+ +--,-Stack=StackSymbol--+

Label Optional
Name TAIL.FAR
Pos. Parameters
EP Entry point symbol.
Key-word Parameters
ARG List of arguments (see page [37).

Stack Symbol indicating the start of the stack being used (see page

7).
In the following example, the noReturn function is tail called. Contents of register T2

and T5 are passed as arguments, and the stack used starts at symbol myStack:

EXTERNAL noReturn
TAIL.FAR noReturn ARG=[T2, T5], Stack= myStack

Page: 52

4.6.9 TAIL.NEAR Macro

The TAIL.NEAR is the same as TAIL.FAR except that the entry point relative offset must
be not more than +/- 1 megabyte. It should only be used when the entry point is part of
the executable, and the executable itself is not larger than 1 megabyte. In this case it
generates code that is PIC (Position Independent Code). If the executable is larger than 1
megabyte, special instructions should be given to the binder, so that the TAIL.NEAR code
and the target entry point are as close as possible in the final executable. TAIL.NEAR
should never be used when the entry point belongs to a dynamic library, since there is a
very high probability that the entry point will be out of range at load time.

Semtmmmm #====TAIL . NEAR===EP === == === = = e e e e e >

| I
+--Label--+

+--,-ARG=ArglList--+ +--,-Stack=StackSymbol--+

Label Optional
Name TAIL.NEAR
Pos. Parameters
EP Entry point symbol.
Key-word Parameters
ARG List of arguments (see page [37).

Stack Symbol indicating the start of the stack being used (see page

[B7).

Chapter 4: Macros Page: 53

4.6.10 TAIL.LCL Macro

The TAIL.LCL macro is the same as the TAIL.NEAR, except that the target entry point is
a local symbol in the current source code.

>mdmmmmm o #====TATL.LCL===~EP, === === === m = o oo e >

| |
+--Label--+

+--,-ARG=ArgList--+ +--,-Stack=StackSymbol--+

Label Optional
Name TAIL.LCL
Pos. Parameters
EP Entry point symbol.
Key-word Parameters
ARG List of arguments (see page [37).

Stack Symbol indicating the start of the stack being used (see page

[37).

Page: 54

4.6.11 TAIL.GOT Macro

The TAIL.GOT macro is used to branch to an entry without any limit to the relative offset
from the branch code to the entry point. It always generates PIC code, but cannot be used
when coding boot loaders or kernels, since no loader is available to create the GOT at boot
time.

>embmmmm o #====TAIL.GOT====EP, === == === = = m e o o oo e e >

I I
+--Label--+

+--,-ARG=ArglList--+ +--,-Stack=StackSymbol--+

Label Optional
Name TAIL.GOT
Pos. Parameters
EP Entry point symbol.

Key-word Parameters

ARG List of arguments (see page [37).
Stack Symbol indicating the start of the stack being used (see page
57-

This is the same TAIL.FAR example using TAIL.GOT:

EXTERNAL noReturn
TAIL.GOT noReturn ARG=[T2, T5], Stack= myStack

Chapter 4: Macros Page: 55

4.6.12 ENTRY Macro

The ENTRY macro generate all the necessary code needed at an entry point.

>--Label------- ENTRY === # == m = mm = mmmm oo oo b >
l——,—Stack=StackSymbol ———————— +
D e Fmm - >
l——,—Stamp=StampMacro ————————— +
D it R T ettt i TR >
+--,-BaseReg=BaseReglList------ +
L R EEEEE LT D R L D L EE T ><
+--,-Export=Boolean----------- +
Label Required
Name ENTRY

Pos. Parameters
None

Key-word Parameters

Stack Symbol indicating the start of the stack.

Stamp Macro name used to create an eye catcher preceding the
entry.

BaseReg List containing the symbol name, within the entry code, and

the register to used as its base.

Stamp Boolean stating if the entry symbol must be exported.

The entry point is aligned to 8 bytes.

When Stack= is set to a non-null string, it refers to the symbol at the start of the current
stack, mapped by the STACK and EDNSTACK macros. In this case the macro generates code
to reset the stack register, and save the return address. It also generates code for all S
and FS type registers to be saved when being modified before return to the caller. Stacks=

Page: 56

is defaulted to the null string.

When Stamp= is set to the name of a macro provided by the coder, it generates code
to invoke the specified macro with Label as the only argument. The coder can use the
macro to prefix the entry point with a string containing such information as entry point
name (eye catcher), date, time, version, etc., and anything else that can help the coder in
debugging when reading a memory dump. Stamp= is defaulted to the null string.

When BaseReg is not empty, it must be a string array containing the name of a symbol
and a register. The symbol indicates a location in the code where addressability is needed
by using the specified register as base register. The code generated loads the symbol
address plus 2k bytes, into the register specified, and it than issues a BASESET directive,
so that the base register can be used to address 4k bytes past the symbol. Typically this is
used to address literals and other constants stored at the end of the code. BaseReg[2]=
is defaulted to an empty array.

When Export is set to TRUE, the macro generates code to export the entry point using the
EXPORT directives. Export is defaulted to TRUE.

This is an ENTRY macro example:

//
myFunc ENTRY Stack= myStack, Stamp= BuildStamp, />
BaseReg= [constants, S2]
//
// Some code here
//
LD T3, junkData // Load first data in junkData
// using default base register
//
// More code here and constants at the end of the code
//
constants LITERALS // Start constants with literals
//

junkData DWRD 23, 45, 12345, 2435, 36, 5687

Chapter 4: Macros Page: 57

In this example, the name of the stack is myStack. Register S2 is used as base register
for the constants at the bottom of the code. Macro BuildStamp is used to prefix the entry
point with a string, to help when reading memory dump. For example macro BuildStamp
could be written as follows:

//MACRO BuildStamp EntryName

var date= new Date(); // Get date and time
var s= date.getMonth() + "/" +
date.getDay() + "/" +

(date.getYear()-100) + " " +
date.getHours() + ":" +
date.getMinutes() + ":" +
date.getSeconds(); // Format date and time
DVASM. formatLine("", "UTF_8", "\"" + EntryName +
"Vi.R2 " + s + "\'", ""); // Define prefix/eye-catcher string

In this case macro BuildStamp generate a prefix string containing, entry point name,
version and release numbers, date, and time.

Page: 58

4.6.13 EXIT Macro

The EXIT macro is used to return control to the caller of an entry point.

Macro EXIT is coded as follows:

S 4m e e EXITmmmm#mmmmmmmmm e o ><
| | |
+--Label--+ +--,-Stack=StackSymbol------- +

Label Optional

Name EXIT

Pos. Parameters
None
Key-word Parameters

Stack Symbol indicating the start of the stack.

When Stack is set to a non-null string, it refers to the symbol at the start of the current
stack, mapped by the STACK and EDNSTACK macros. This must be the same symbol specified
for the stack in the corresponding ENTRY macro. In this case the macro generates code to

restore the stack register and the return address. It also generates code for all modified S

and FS type registers to be restored.

Chapter 4: Macros Page: 59

4.6.14 STACK and ENDSTACK macros

Macros STACK and ENDSTACK are used together to map the section of the stack used by an
entry point. Each stack section that is allocated when entering an entry point, is allocated
downward, so that the caller stack section low address is next to the callee stack section
high address. The layout of a stack section that is compatible RISC-V C compilers is as
Tollows (from low address up):

e Area reserved for overflow parameters passed when calling another entry point. If
there is no call to other entry points, or there is no parameter overflow, this area
length is zero. This area is reserved by the STACK macro;

e Area containing local variables. This area is specified directly by the coder in between
the SATCK and ENDSTACK macros;

e Area reserved to save non S type registers (integers) and non SF type registers
(floating point) to be saved when calling another entry point (caller save). If no entry
point is called this area length is zero;

e Area reserved to save S type registers (integer) and SF type registers (floating point)
when modified. This area is reserved by the ENDSTACK macro and only for those
registers that are modified (callee save). If the entry point uses only A and T type
registers this area length is zero;

e Area reserved to save the stack register SP;

e Area reserved to save the return register RA.

Page: 60

Macro STACK maps the starts of a stack.

>--Label------- STACK===#= === == m oo mmmmmm oo D TP ><
I
+--,--ParmArea=NumOfWords----+
Label Required
Name STACK

Pos. Parameters
None
Key-word Parameters

ParmArea Overflow parameter area size within the stack.

Label is required and it is used to name the new MMAP. Key-word parameter ParmArea
specifies in words (32 bits architecture), or double words (64 bits architecture) the size of
the parameter overflow area. The default is zero.

Chapter 4: Macros

Page: 61

Macro ENDSTACKmaps the end of a stack.

So-t--—------ +---ENDSTACK---#-=----------------ommm oo - Hmm—mmm——m - >
l-—Label--l l——,—SaveReg=SaveRegList ----- +
D e e e e e e R tommmmmmm o ><
l——,—SaveFReg=SaveFRegList ————— +
Label Optional
Name ENDSTACK

Pos. Parameters
None
Key-word Parameters

SaveReg

SaveReg

List of S type registers that will be saved when calling other
functions.

List of S type floating point registers that will be saved when
calling other functions.

Key-word Parameters SaveReg and SaveFReg specify the list of non S type and non SF
type registers that need space reserved for saving and restoring when when calling other
entry points. The default for both is an empty list. There is no need to specify the list of
modified S type and SF type registers that need to save on entry and restored on exit. The
space for saving these registers is automatically reserved by the ENDSTACK macro.

Page: 62

This is an example on how to use STACK and ENDSTACK:

//
// Start stack mapping - 8 words or double words for
// parameter overflow

//

myStack STACK ParmArea= 8
//

// Start local variables

//

vari DWRD o]

varz BYTE o [16]

var3 HWRD o]

//

// End stack - create space for save registers to, ti, t2, t3, ts4
// when calling other entry points
//

!/

ENDSTACK SaveReg=[t0-4]

Chapter 4: Macros Page: 63

4.7 External Symbols Access Macros

There are three type of external symbol access macros. The first type loads the address
of an external symbol, the second load data at an external symbol location, and the third
store data at an external symbol location.

Important: for repeated load and store to the same symbol, it is more efficient to load and
use the address of the symbol, instead of using direct load and store macros to external
symbols.

471 LA.FAR Macro

Macro LA.FAR generate code to load the address of an external symbol.

Sombmmmm - +----LA.FAR----- Rd,------ Symbol-========= = mmmmm e ><
I I
+--Label--+
Label Optional
Name LA.FAR

Pos. Parameters
Rd Register used to load the address of an external symbol.
Symbol External symbol.

Key-word Parameters

None

Page: 64

4.7.2 LA.GOT Macro

Macro LA.GOT generate code to load the address of an external symbol from the GOT
table.

T +----LA.GOT----- Rd,------ Symbol-----=====--——-mmmeo - ><
I I
+--Label--+

Label Optional

Name LA.GOT

Pos. Parameters
Rd Register used to load the address of an external symbol.
Symbol External symbol.

Key-word Parameters

None

There are no limits to the size of the relative offset of the symbol location from the code
generated. The code generated is PIC. The macro cannot be used in boot loader or OS
kernels where a GOT is not available.

Chapter 4: Macros Page: 65

4.7.3 LB.FAR Macro

Macro LB. FAR generate code to load a byte located at an external symbol memory address.

R +----LB.FAR----- Rd,------ Symbol----======--———mmmem - ><
I I
+--Label--+

Label Optional

Name LB.FAR

Pos. Parameters
Rd Register used to load the byte at the external symbol address.
Symbol External symbol.

Key-word Parameters

None

The symbol must be at a relative offset from the code generated of less than +/- 2
gigabytes. The code generated is PIC, unless the symbol sits in a dynamic library.

Page: 66

474 LH.FAR Macros

Macro LH.FAR generate code to load a half word located at an external symbol memory
address.

T #----LH.FAR----- Rd,------ Symbol-----=====--——-mmmeo - ><
I I
+--Label--+

Label Optional

Name LH.FAR

Pos. Parameters

Rd Register used to load the half word at the external symbol
address.
Symbol External symbol.

Key-word Parameters

None

The symbol must be located at a relative offset from the code generated of less than +/- 2
gigabytes. The code generated is PIC, unless the symbol sits in a dynamic library.

Chapter 4: Macros Page: 67

4.7.5 LW.FAR Macro

Macro LW.FAR generate code to load a word located at an external symbol memory
address.

T #=---LW.FAR----- Rd,------ Symbol-----=====--——mmmme - ><
I I
+--Label--+

Label Optional

Name LW. FAR

Pos. Parameters
Rd Register used to load the word at the external symbol address.
Symbol External symbol.

Key-word Parameters

None

The symbol must be located at a relative offset from the code generated of less than +/- 2
gigabytes. The code generated is PIC, unless the symbol sits in a dynamic library.

Page: 68

4.7.6 LD.FAR Macro

Macro LD.FAR generate code to load a double word located at an external symbol memory
address.

T #----LD.FAR----- Rd,------ Symbol-----=====--——-mmmeo - ><
I I
+--Label--+

Label Optional

Name LD.FAR

Pos. Parameters

Rd Register used to load the double word at the external symbol
address.
Symbol External symbol.

Key-word Parameters

None

The symbol must be located at a relative offset from the code generated of less than +/- 2
gigabytes. The code generated is PIC, unless the symbol sits in a dynamic library.

Chapter 4: Macros Page: 69

4.7.7 SB.FAR Macro

Macro SB. FAR generate code to store a byte at the memory address of an external symbol.

>mmtmmmmmmme- +#----SB.FAR----- Rd, --Rt, -=Symbol-=-=-=-====momomom e oo ><
| |
+--Label--+
Label Optional
Name SB.FAR

Pos. Parameters

Rd Register containing the byte to be stored at the external symbol
address.

Rt Work register.

Symbol External symbol.

Key-word Parameters

None

The symbol must be located at a relative offset from the code generated of less than +/- 2
gigabytes. The code generated is PIC, unless the symbol sits in a dynamic library.

Page: 70

4.7.8 SH.FAR Macro

Macro SH.FAR generate code to store a half word at the memory address of an external
symbol.

T +----SH.FAR----- Rd,--Rt,--Symbol--==-=------cccomommmmo- ><
I I
+--Label--+

Label Optional

Name SH.FAR

Pos. Parameters

Rd Register containing the half word to be stored at the external
symbol address.

Rt Work register.
Symbol External symbol.
Key-word Parameters

None

The symbol must be located at a relative offset from the code generated of less than +/- 2
gigabytes. The code generated is PIC, unless the symbol sits in a dynamic library.

Chapter 4: Macros Page: 71

479 SW.FAR Macro

Macro SW. FAR generate code to store a word at the memory address of an external symbol.

>mmtmmmmmmme- +==--SW.FAR----- Rd, --Rt, -=Symbol-=-=-=-====momomom e oo ><
| |
+--Label--+
Label Optional
Name SW. FAR

Pos. Parameters

Rd Register containing the word to be stored at the external
symbol address.

Rt Work register.
Symbol External symbol.
Key-word Parameters

None

The symbol must be located at a relative offset from the code generated of less than +/- 2
gigabytes. The code generated is PIC, unless the symbol sits in a dynamic library:.

Page: 72

4.7.10 SD.FAR Macro

Macro SD. FAR generate code to store a double word at the memory address of an external
symbol.

T +----SD.FAR----- Rd,--Rt,--Symbol--==-=-------ccooommmm- ><
I I
+--Label--+

Label Optional

Name SD.FAR

Pos. Parameters

Rd Register containing the double word to be stored at the
external symbol address.

Rt Work register.

Symbol External symbol.

Key-word Parameters

None

The symbol must be located at a relative offset from the code generated of less than +/- 2
gigabytes. The code generated is PIC, unless the symbol sits in a dynamic library.

Chapter 4: Macros Page: 73

4.8 Buffer Handling Macros

Macros named BUFFER. * are provided to initialize, copy and compare buffers. The macro
generate high performance code that whenever possible works using the full width of the
registers (32 or 64 bits).

Important: TO take full advantage of the BUFFER.* macros all buffers should be 4 byte
aligned for 32 bit architectures and 8 byte aligned for 64 bit architectures.

Page: 74

4.8.1 BUFFER.LDPADREG Macro

The BUFFER.LDPADREG macro initialize a register so that each byte in the register equals
the provided pad byte.

S +----BUFFER.LDPADREG----- PadReg, ---Char, ---WReg----------- ><
| |
+--Label--+

Label Optional

Name BUFFER.LDPADREG

Pos. Parameters

PadReg Register to be padded.
Char Character to be used for padding.
WReg Work register, only needed for 64 bits architectures.

Key-word Parameters

None

For some of the BUFFER.* macros a pad byte is used. In order to take advantage of the
full register width, a register, used as pad register, must be first initialized, so that each
byte in the register is set to the pad byte.

When the pad byte is zero (all bits 0) there is no need to use BUFFER.LDPADREG, and
register XO should be used as pad register.

This is an example on how to use BUFFER.LDPADREG:

InitPad BUFFER.LDPADREG T3, '-', To // Set pad register
// to '-' character

Chapter 4: Macros Page: 75

4.8.2 BUFFER.SET Macro

The BUFFER.SET macro initialize all bytes in a buffer to the same values.

>mmtmmmmmmme- +----BUFFER.SET----- Buffer,---Length, ---PadReg------------ ><
| |
+--Label--+
Label Optional
Name BUFFER.SET

Pos. Parameters

Buffer Register containing the buffer address.
Length Register containing the buffer length.
PadReg Pad register.

Key-word Parameters

None

Upon completion, register Buffer will contain the address of the first byte following the
buffer, register Length value is unpredictable, and register PadReg value is unchanged.

This is an example on how to use BUFFER.SET:

InitPad BUFFER.LDPADREG Te, '-', T1 // Set pad register
// to '-' character
Set BUFFER.SET S2, S3, To // Set buffer to '-’

In the following example a 4K page is cleared:

ClearPage LI To, 4096 // Load page length
ClearPage BUFFER.SET S2, Te, Xo // ClLear page at addr S2

Page: 76

4.8.3 BUFFER.COPY Macro

The BUFFER.COPY macro copy the content of a buffer to another buffer with the same
length.

Somd-mmmmm--- +----BUFFER.COPY----ToBuffer,---FromBuffer,---Length,------ >
I I
+--Label--+
D ittt Wreg---------------=--------————-"-"-—---- ><
Label Optional
Name BUFFER.COPY

Pos. Parameters

ToBuffer Register containing the destination buffer address.
FromBuffer Register containing the source buffer address.
Length Register containing both buffers length.

WReg Work register.

Key-word Parameters

None

Upon completion, register ToBuffer contains the address of the first byte following the
destination buffer. Register FromBuffer contains the address of the first byte following
the source buffer. Register Length value is unpredictable.

This is an example on how to use BUFFER.COPY:

Copy BUFFER.COPY S2, S3, S4, Te // Copy data at addr S2
// to addr S3
// Length is in S4

Chapter 4: Macros Page: 77

4.8.4 BUFFER.COPYPAD Macro

The BUFFER.COPYPAD macro copy the content of a buffer to another buffer of different
length.

T +----BUFFER.COPYPAD----ToBuffer,---TolLength,--------------- >
l--Label——l
D FromBuffer,---FromLength,-------------------- >
S mmm o mmmm— oo oo PadReg,---WReg--------------------~-~-~—-—-———-~--- ><
Label Optional
Name BUFFER.COPYPAD

Pos. Parameters

ToBuffer Register containing the destination buffer address.
ToLength Register containing the destination buffer length.
FromBuffer Register containing the source buffer address.
FromLength Register containing the source buffer length.
WReg Work register.

PadReg Pad register.

Key-word Parameters

None

If the source buffer length is longer, the data is truncated. If the source buffer length is
shorter, the data is padded using a previously initialized pad register.

Upon completion, register ToBuffer contains the address of the first byte following the
destination buffer. Register FromBuffer contains the address of the first byte following
the source buffer. Registers ToLength and FromLength values are unpredictable. Register
PadReg is unchanged.

Page: 78

This is an example on how to use BUFFER.COPYPAD:

InitPad

Copy

BUFFER.LDPADREG

BUFFER.COPYPAD

Te, " ', T2
// Set pad register to blank spaces

S2, S3, S4, S5, Te, T1

// Copy data at addr S2 to addr S4
// IF S3 < S5 data is truncated

// IF S3 > S5 data is padded

// with blank spaces

Chapter 4: Macros Page: 79

4.8.5 BUFFER.COMP Macro

The BUFFER.COMP macro compare the content of a buffer to another buffer. The length of
both buffers is the same.

Somd-m—mmm--- +----BUFFER.COMP-------- Buffer1,---Buffer2,---Length,------ >
| |
+--Label--+
> mmmmmmmmmm—mm——ooo————ooo oo Branch,---WReg-------------------------- ><
Label Optional
Name BUFFER.COMP

Pos. Parameters

Bufferi Register containing the first buffer address.

Buffer2 Register containing the second buffer address.

Length Register containing both buffers length.

Branch List of two labels. The first label is branched to if the first

buffer is less than the first. The second label is branched to if
the first buffer is greater than the second.

WReg List containing two work registers.
Key-word Parameters

None

If the two buffers are equal no branch takes place.

Upon completion, the contents of registers Bufferi, Buffer2, Length, and the work
registers are unpredictable.

Page: 80

This is an example on how to use BUFFER.COMP:

Comp BUFFER.COMP S2, S3, Su4, /> Compare data at addr S2
/> with data at addr S3
/> with length in Ss
[LessThen, GreaterThen] /> Branch targets
[To-1] // Work registers

//
// Equal code starts here

//

//

// Less than code starts here

//
LessThen BYTE olo]

//

// Greater than code starts here

//
GreaterThen BYTE olo]

Chapter 4: Macros Page: 81

4.8.6 BUFFER.COMPPAD Macro

The BUFFER.COMPPAD macro compare the content of a buffer to another buffer with
different lengths.

Somd-m—mm---- +----BUFFER.COMPPAD----- Bufferi,---Lengthi,---Buffer2,----- >
| |
+--Label--+
Sommmmmmmmm—ommo-o- Length2,---PadReg, ---Branch,---WReg---------------- ><
Label Optional
Name BUFFER.COMPPAD

Pos. Parameters

Bufferi Register containing the first buffer address.

Lengthi Register containing the first buffer length.

Buffer2 Register containing the second buffer address.

Length2 Register containing the second buffer length.

PadReg Pad register.

Branch List of two labels. The first label is branched to if the first

buffer is less than the first. The second label is branched to if
the first buffer is greater than the second buffer.

WReg List containing two work registers.
Key-word Parameters

None

If the two buffers have unequal length, the shorter buffer is logically padded with with
bytes in the pad register. If the two buffers are equal no branch takes place.

Upon completion, the contents of registers Bufferi, Lengtha, Buffer2, Length2, and the
work registers are unpredictable. Register PadReg is unchanged.

Page: 82

This is an example on how to use BUFFER.COMPPAD:

InitPad

Comp

//

BUFFER.LDPADREG To, " ', T1 //
//

BUFFER.COMPPAD S2, S3, S4, S5, />
/>
/>
/>

Set pad register
to blank spaces

Compare data at addr S2
and length in s3

with data at addr Ss4
with length in S5

[LessThen, GreaterThen], /> Branch targets

To, />

Pad register

[T1-2] // Work registers

// Equal code starts here

//

//

// Less than code starts here

//

LessThen

//

BYTE oloe]

// Greater than code starts here

//

GreaterThen BYTE olo]

Chapter 4: Macros Page: 83

4.9 String Handling Macros

String handling macros are equivalent to the C language library string functions. Each
string must be a C language compatible string and it must be terminated by a null byte.

49.1 STRING.CLEAR Macro

Macro STRING.CLEAR sets the length of a string to zero.

ot mmmm—- +----STRING.CLEAR------- String---------------=-----———-~--- ><
I I
+--Label--+
Label Optional
Name STRING.CLEAR

Pos. Parameters
String Register containing the string address.
WReg List containing two work registers.
Key-word Parameters

None

Parameter String is a register that contains the address of the string and it remains
unchanged.

Page: 84

492 STRING.COMP Macro

Macro STRING.COMP compares two strings and is functionally equivalent to the
language function strcmp.

So-dmmmmmm - +----STRING.COMP-------- Stringi,---String2,---Branch,------ >
I I
+--Label--+
> WReg-------------------mm oo ><
Label Optional
Name STRING.COMP

Pos. Parameters

String Register containing the first string address.
String Register containing the second string address.
Branch List of two labels. The first label is branched to if the first

string is less than the second. The second label is branched to

if the first string is greater than the second.
WReg List containing two work registers.
Key-word Parameters

None

If the two strings have unequal length, the shorter string is logically padded with null

bytes. If the two strings are equal no branch takes place.

Upon completion, the contents of registers String1 and String2 are unpredictable.

Chapter 4: Macros Page: 85

This is an example on how to use STRING.COMP:

Comp STRING.COMP S2, S3, /> Compare string at addr S2
/> with string at addr s3
[LessThen, GreaterThen], /> Branch targets
[T1-2] // Work registers

//
// Equal code starts here

//

//

// Less than code starts here

//
LessThen BYTE olo]

//

// Greater than code starts here

//

GreateThen olo]

Page: 86

4.9.3 STRING.CONCAT Macro

Macro STRING.CONCAT concatenates two strings and is functionally equivalent to the C
language function strcat.

So-dmmmmmm - +----STRING.CONCAT------ ToString,---FromString,---WReg----><
I I
+--Label--+
Label Optional
Name STRING.CONCAT

Pos. Parameters

ToString Register containing the destination string address.
FromString Register containing the source string address.
WReg Work registers.

Key-word Parameters

None

Upon completion, register ToString1 will contain the address of the byte following the
terminating null byte of the destination string, and register FromString will contain the
address if the byte following the null terminating byte of the source string. Content of
register WReg is unpredictable.

This is an example on how to use STRING.CONCAT:

Comp STRING.CONCAT S2, S3, Te // Concatenate string at addr S3
// to string at addr s2

Chapter 4: Macros Page: 87

494 STRING.COPY Macro

Macro STRING.COPY copies a string to another string and is functionally equivalent to
the C language function strcpy.

So-dmmmmmm - +----STRING.COPY-------- ToString,---FromString,---WReg----><
I I
+--Label--+
Label Optional
Name STRING.COPY

Pos. Parameters

ToString Register containing the destination string address.
FromString Register containing the source string address.
WReg Work registers.

Key-word Parameters

None

Upon completion, register ToString1 will contain the address of the byte following the
terminating null byte of the destination string, and register FromString will contain the
address if the byte following the null terminating byte of the source string. Content of
register WReg is unpredictable.

This is an example on how to use STRING.COPY:

Comp STRING.COPY S2, S3, Te // Copy string at addr S3
// into string at addr S2

Page: 88

495 STRING.LENGTH Macro

Macro STRING.LENGTH computes the length of a string and is functionally equivalent to
the C language function strlen.

P +----STRING.LENGTH------ Length,---String,---WReg---------- ><
I I
+--Label--+
Label Optional
Name STRING.LENGTH

Pos. Parameters

Length Register containing the string length upon completion.
String Register containing the string address.
WReg Work registers.

Key-word Parameters

None

Upon completion, register String will contain the address of the byte following the
terminating null byte of the. Content of register WReg is unpredictable.

This is an example on how to use STRING.LENGTH:

Comp STRING.COPY Ao, S2, Toe // Calculate length of string
// at address S2 and
// store result in reg Ae

Chapter 4: Macros Page: 89
4.10 HEAPSORT Macro
The HEAPSORT macro is used to sort a vector of words or double words.
P LT +----HEAPSORT------- BaseAddr,---Size,---RecSize,----------- >
| I
+--Label--+
So-mmmmmmm oo mmmmm CompMacro,---WReg--------------------------- ><
Label Optional
Name HEAPSORT

Pos. Parameters
BaseAddr
Size

RecSize

CompMacro

WReg
Key-word Parameters

None

Register containing the vector address.
Register containing the number of records in the vector.

Constant integer specifying the size in bits of the records in
the vector to be sorted. It can only be 32 (word) or 64 (double
word).

is the name of a comparison macro, provided by the coder,
that is used by HEAPSORT to check the order of sorting of two
records.

List of a minimum of 9 work registers (see below).

The records to be sorted can contain the values to be sorted or addresses of structures to

be sorted.

Page: 90

Code generated by macro HEAPSORT invokes the comparison macro in multiple places. The
header of the comparison macro must follow this template:

//MACRO MacroName EiAddr, E2Addr, {Boolean}EqFlag, BrLbl, WReg[]= []

where the parameters are:

E1Addr Register containing value of first element in vector to be
compared;

E2Addr Register containing value of second element in vector to be
compared;

EqFlag A Boolean flag indicating if comparison should include equality
or not. This is necessary to guarantee consistent order
sorting;

BrLbl A branch label. The code generated by the macro must branch

to this label if the first element is less then or less-equal than
the second element. Less-equal must be used only when the
equality flag is set to true;

WReg A list of work registers starting from the 10th registers
in the WReg list passed to macro HEAPSORT onward. For
example if the comparison macro needs 3 work registers, than
macro HEAPSORT must be invoked passing a WReg list with 12
registers so that the 10th, 11th and 12th registers are passed
in a list of work registers to the comparison macro.

Chapter 4: Macros Page: 91

In the following example a function that can be called from a C program sort a double
words vector in ascending order;

[==
// Heap sort function using 64 bit integers - ascending order
//
// Parameters: Ae Address of vector
// A1 Size of vector
[==
//

SETENV "RISCV", />

"RV64I:a,c,d,m,n,zicsr,zifencei", />
"LP64D", "linux"
//
#MACRO
//MACRO CompLong R1, R2, EqualFlag, BranchLabel, WReg[]= []
if (EqualFlag)
\#Label BLE #R1, #R2, #BranchlLabel
else

\#Label BLT #R1, #R2, #BranchLabel
HEND
//

BASEDEF
//
Code TextSect
//
sortlong ENTRY Stack=!"" // Leaf entry point

// only temp reg used

//

HEAPSORT aoe, a1, 64, ComplLong, [te-6, a2-3]
//

EXIT
END

Page: 92

4.11 Linked List Macros

DVASM™ RISC-V module provides macros to support three types of linked lists. These are:

e single linked lists with one head pointer as anchor. These lists are normally used as
stacks. They are named SLL. *;

¢ single linked lists with both head and tail pointer as anchor. These lists are normally
used as queues. They are named STLL. *;

e doubly linked circular lists with a single head/tail pointer in the anchor. They are
named CDLL. *.

4.11.1 Anchor Mapping Macros

Macros *.ANCHOR map the fields used to anchor each type of linked list.

>mdmmmmm o mmmmm #==CDLL . ANCHOR == #= === === == == m = oo ><

| | | |
+--Label--+ +--SLL.ANCHOR---+

| |
+--STLL.ANCHOR--+

Label Optional

Name CDLL.ANCHOR
SLL.ANCHOR
STLL.ANCHOR

Pos. Parameters
None
Key-word Parameters

None

Chapter 4: Macros

Page: 93

In the following example:

myAnachor STLL.ANCHOR // Anchor for STLL list

the following code is generated for the 64 bits architecture:

myAnachor DWRD ole] // Start of anchor
myAnchor.head DWRD 0 // Head pointer of list
myAnchor.tail DWRD o} // Tail pointer of list

When the same example is used without a label the code generated is:

DWRD o[2] // Space for STLL anchor

Page: 94

4.11.2 Anchor Initialization Macros

Macros *.INIT are used to initialized an anchor structure for each type of linked list.

>mmbmmmmmmm - #===4-=CDLL.INIT--+----ANChOT--===== === oo e ><

+--Label--+ +--SLL.INIT---+

+--STLL.INIT--+

Label

Name

Pos. Parameters

Anchor

Key-word Parameters

None

Optional

CDLL.INIT
SLL.INIT
STLL.INIT

It is the addressable anchor field of the linked list. If the
address of the anchor is in a register, say SO, parameter
Anchor must be coded as 0[So].

Initialization is needed when the anchor structure sits in dynamic storage such as the

stack.

Chapter 4: Macros Page: 95

In the following example macro CDLL.INIT is used to initialize a CDLL anchor allocated
in the stack:

//
myEntry ENTRY Stack=myStack
!/
CDLL.INIT MyAnchor // Initialize anchor
//
// Code using the CDLL list here
//
EXIT
//
myStack STACK
//
myAnchor CDLL.ANCHOR // Space in stack for CDLL anchor
//
STACKEND
!/

END

Page: 96

4.11.3 Node Mapping Macros

Macros *.NODE map the pointers within each list node used to link the list.

So-d-mmmm---- +----- +--CDLL.NODE--+---=-=------—-—-------————--m - — - ><

| | I |
+--Label--+ +--SLL.NODE---+

I |
+--STLL.NODE--+

Label Optional

Name CDLL.NODE
SLL.NODE
STLL.NODE

Pos. Parameters
None
Key-word Parameters

None

In the following example:

myNode CDLL.NODE // Node for CDLL list

the following code is generated for the 64 bits architecture:

myNode DWRD ole] // Start of node
myNode.next DWRD 0 // Pointer to next node
myNode.prev DWRD 0 // Pointer to prev node

When the same example is used without label the code generated is:

DWRD o[2] // Space for CDLL node

Chapter 4: Macros Page: 97
4.11.4 Push Macros
Macros *.PUSH push a node into a corresponding linked list.
L EEEEEEE +---+--CDLL.PUSH--+----Anchor, ---Node, ---WReg-------------~ >
I (. I
+--Label--+ +--SLL.PUSH---+
I I
+-=-STLL.PUSH--+
e e T e ekt +o—— - ><
I
+---,--FieldDispl=fieldDIsplacement---+
Label Optional
Name CDLL.PUSH
SLL.PUSH
STLL.PUSH

Pos. Parameters

Anchor

Node
WReg

Key-word Parameters

FieldDispl

It is the addressable anchor field of the linked list. If the
address of the anchor is in a register, say S0, parameter
Anchor must be coded as 0[Soe].

Register containing the address of the node to be pushed.

List containing two work registers for macro CDLL.PUSH. A
single work register for macros SLL.PUSH and STLL.PUSH.

Displacement of the node list pointer field within each node. It
is defaulted to zero.

In the following example a node is pushed in a doubly linked list:

//
//
//
//
//

//

Anchor address is in register S2
Node address is in register Ti
Displacement of node list pointers is zero

CDLL.PUSH

o[S20], T1, WReg=[T4, T5]

Page: 98

4.11.5 Pop Macros

Pop macros *.POP pop a node from a corresponding linked list.

Somtmmmmmmmoo +---+--CDLL.POP--+----Anchor,---Node, ---NullLbl,---WReg---->

+--Label--+ +--SLL.POP---+

+--STLL.POP--+

> ___________________

Label

Name

Pos. Parameters

Anchor

Node

NullLbl
WReg

Key-word Parameters

FieldDispl

——————— b - - -3

I
+---,--FieldDispl=fieldDIsplacement---+

Optional

CDLL.POP
SLL.POP
STLL.POP

It is the addressable anchor field of the linked list. If the
address of the anchor is in a register, say SO, parameter
Anchor must be coded as 0[S@].

Register containing, upon completion, the address of the node
to be popped.

Label to be branched to, if the list is empty.

List containing two work registers for macro CDLL.POP. A
single work register for macros SLL.POP and STLL.POP.

Displacement of the node list pointer field within each node. It
is defaulted to zero.

Chapter 4: Macros Page:

99

In the following example a node is popped from a linked list:

//
// Anchor address is in register S2
// Node address is in register S3, if list is not empty
// Displacement of node list pointers is zero
!/
SLL.POP o[S20], Ti1, EmptyList, WReg=Ts4
//
// Insert code to handle the popped node
//
!/
EmptyList WRD ole] // Empty list code

//

// starts here

Page: 100

4.11.6 Tailpush Macros

Macros *.TAILPUSH push a node into a corresponding linked list at the tail end of the
list.

Somd-m—mm---- +---+--CDLL.TAILPUSH--+----Anchor,---Node, ---WReg---------- >

| | | |
+--Label--+ +--STLL.TAILPUSH--+

e e et T TR - ><
I
+---,--FieldDispl=fieldDIsplacement---+
Label Optional
Name CDLL.TAILPUSH
STLL.TAILPUSH

Pos. Parameters

Anchor It is the addressable anchor field of the linked list. If the
address of the anchor is in a register, say SO, parameter
Anchor must be coded as 0[Se].

Node Register containing the address of the node to be pushed.

WReg List containing two work registers for macro CDLL.TAILPUSH.
A single work register for macro STLL.TAILPUSH.

Key-word Parameters

FieldDispl Displacement of the node list pointer field within each node. It
is defaulted to zero.

In the following example a node is pushed at the tail end of a linked list, with both head
and tail pointers:

//

// Anchor address is in register S2

// Node address is in register T1

// Displacement of node list pointers is zero
//

STLL.TAILPUSH o[S20], T1, WReg=[T4, Ts]
//

Chapter 4: Macros Page: 101
4.11.7 CDLL.TAILPOP Macro
Macro CDLL.TAILPOP pops a node from the tail end of a doubly linked list.
Somtmmmmmmmoo +---+--CDLL.TAILPOP--+----Anchor,---Node,---NullLbl,------- >
I I
+--Label--+
Do mm - WREg--—4-—- - - - oo +---><
I I
+---,--FieldDispl=fieldDIsplacement---+
Label Optional
Name CDLL.TAILPOP.

Pos. Parameters

Anchor

Node

NullLbl
WReg
Key-word Parameters

FieldDispl

It is the addressable anchor field of the linked list. If the
address of the anchor is in a register, say S0, parameter
Anchor must be coded as 0[Se].

Register containing, upon completion, the address of the node
to be popped.

Label to be branched to, if the list is empty.

List containing two work registers.

Displacement of the node list pointer field within each node. It
is defaulted to zero.

Page: 102

In the following example, a node is popped from the tail of a circular doubly linked list:

//
// Anchor address is in register S2
// Node address is in register S3, if list is not empty
// Displacement of node list pointers is zero
!/
CDLL.TAILPOP o[S20], T1, EmptylList, WReg=Ts
//
// Insert node to handle the popped node
//
!/
EmptyList WRD ole] // Empty list code

// starts here
//

Chapter 4: Macros Page: 103

4.11.8 Find Macros

Macros *.FIND find the first node in a corresponding list.

Somtmmmmmmmoo +---+--CDLL.FIND--+----Anchor,---CompToken,---Node,-------- >
I I I
+--Label--+ +--SLL.FIND---+

I I
+--STLL.FIND--+

D CompMacro,---NullLbl,---WReg----------------- >
P e] e e] tm———— >
I I
+---,--FieldDispl=fieldDIsplacement---+
P e et R e e LT e e L L P ><
I
+---,--Remove=Boolean------- +
Label Optional
Name CDLL.FIND
SLL.FIND
STLL.FIND

Pos. Parameters

Anchor It is the addressable anchor field of the linked list. If the
address of the anchor is in a register, say SO, parameter
Anchor must be coded as 0[S@].

CompToken Register whose value is used, by the comparison macro, to
locate the node being searched for.

Node Register containing, upon completion, the address of the node
found.
CompMacro Name of a comparison macro, provided by the coder, used to

check if the current node matches the search criteria (see
below for more details).

NullLbl Label to be branched to, if no node is found.

Page: 104

WReg

Key-word Parameters

FieldDispl

Remove

List containing the macro work registers, plus the registers
needed by the comparison macro. Macro CDLL.FIND require
3 work registers when the Remove option is used, 1 register
otherwise. Macros SLL.FIND and STLL.FIND requires 2 work
register when the Remove option is used, none otherwise.

Displacement of the node list pointer field within each node. It
is defaulted to zero.

Boolean value that indicates if the node found should be
remove (true) or not (false). It is defaulted to false.

The comparison macro header must follow this template:

//MACRO MacroName CompToken, NodeAddr, MatchLbl, WReg[]

where the parameters are:

CompToken

NodeAddr
MatchLbl

WReg

This is the same CompToken register that is passed to the
FIND.* macros, and it is used to decide if a node is a match;

Register containing the address of the node being checked,;

Branch label to which the code generated by the comparison
macro will branch if the node is a match;

A list of work registers. When the remove flag is set to true,
this list starts from the 3rd register in the WReg list passed
to macro STLL.FIND onward, and the 4th register in the WReg
list passed to CDLL.FIND onward. When the remove flag is set
to false, this list starts from the Ist register in the WReg list
passed to macro STLL.FIND onward, and the 2nd register in
the WReg list passed to CDLL.FIND onward. For example, when
the remove flag is true, if the comparison macro needs 1 work
register, than macro CDLL.FIND must be invoked passing a
WReg list with 4 registers, so that the 4th register is passed in
a list of work registers to the comparison macro.

Chapter 4: Macros

Page: 105

In the following example a node is searched in a linked list with both head and tail
pointers. If a matching node is found it will be removed.

//
// Macro to find a node with matching Dataei field
//
#MACRO
//MACRO CompData CompToken, NodeAddr, MatchLbl, WReg[]
var WRego= WRegl[o];
\#Label LD #WRego, Dataoi-Node[#NodeAddr]
// Load data from element
\ BEQ #WRego, #CompToken, #MachLbl
// Branch to process match
#END
//
// Anchor address is in register S2
// Comparison token is in register S3
// Node address is in register S4, if node is found
//
STLL.TAILPOP o[S20]1, S3, S4, CompData, NotFound, />
Remove=yes, WReg=[T2-5], />
FieldDisp= NodelLnk-Node
// List pointers are not
// at displacement zero in node
//
// Insert code to handle the node found and removed from list
//
//

NotFound WRD

//

// Node mapping
!/

Node MMAP
Datae1 DWRD
Nodelnk CDLL.NODE
//

olo]

// No node found code
// starts here

// Start node mapping
// Field used to find node
// Space for list pointers

Page: 106

4.11.9 CDLL.REMOVE Macro

Macros CDLL.REMOVE removes node from a circular doubly linked list.

So-t--------- +---+--CDLL.REMOVE--+----Anchor,---Node,---WReg------------ >
l——Label——l
e e e T e e +--=><
+———,——FieldDispl=fie1dDIsp1acement———l
Label Optional
Name CDLL.REMOVE.

Pos. Parameters

Anchor

Node
WReg
Key-word Parameters

FieldDispl

It is the addressable anchor field of the linked list. If the
address of the anchor is in a register, say S0, parameter
Anchor must be coded as 0[Se].

Register containing the address of the node to be removed.

List containing two work registers.

Displacement of the node list pointer field within each node. It
is defaulted to zero.

In the following example a node is remove from a doubly linked list.

//

// Anchor address is in register S2
// Node address is in register Si4
//

CDLL.REMOVE o[S20], S4, WReg=[T2, T3]

//

Chapter 4: Macros Page: 107

4.12 AVL Tree Macros

DVASM™ RISC-V module provides macros to support all standard operations with AVL trees.

4.12.1 AVL.ANCHOR Macro

Macro AVL.ANCHOR maps the fields used to anchor an AVL tree.

S P AVL . ANCHOR == = = = = = = = = = — = m o oo ><
| |
+--Label--+

Label Optional

Name AVL.ANCHOR

Pos. Parameters
None
Key-word Parameters

None

Page: 108

In the following example:

myAnachor AVL.ANCHOR // Anchor for AVL tree

the following code is generated for the 64 bits architecture:

myAnachor DWRD olo] // Start of anchor
myAnchor.head DWRD 0 // Head pointer of list

When the same example is used without a label the code generated is:

DWRD 0 // Space for AVL tree anchor

Chapter 4: Macros Page: 109

4.12.2 AVL.INIT Macro

Macro AVL.INIT is used to initialize an AVL tree anchor structure.

R #mmm - AVL.INIT-------- ANChOT===========ommmmmmmme ><
I I
+--Label--+
Label Optional
Name AVL.INIT

Pos. Parameters

Anchor It is the addressable anchor field of the linked list. If the
address of the anchor is in a register, say SO, parameter
Anchor must be coded as 0[S@].

Key-word Parameters

None

Initialization is needed when the anchor structure sits in dynamic storage, such as the
stack. In the following example macro AVL.INIT is used to initialize an AVL tree anchor
allocated in the stack:

//
myEntry ENTRY Stack=myStack
//
AVL.INIT MyAnchor // Initialize anchor
//
// Code using the AVL tree here
//
EXIT
//
myStack STACK
//
myAnchor AVL .ANCHOR // Space in stack for AVL tree anchor
//
STACKEND
//

END

Page: 110

4.12.3 AVL.NODE Macro

Macros AVL.NODE map the link pointers within each tree node used to link the tree.

R #mmm - AVL .NODE === = = = === = = = = — m = oo oo ><
I I
+--Label--+

Label Optional

Name AVL.NODE

Pos. Parameters
None
Key-word Parameters

None

It is important to note that the low three bits of the parent node
pointer are used as attributes of the node, and for this reason
each node must be aligned on 8 bytes boundaries even when using 32 bits processors.

In the following example

myNode AVL.NODE // Node for AVL tree

AVL.NODE generates the following code for 64 bits architecture:

#Label

#Label..left
#Label. .parent #wrd 0]

//
//
//
//
//
//
/!
//
//
//

#lLabel..right #wrd o}

Low 3
Bit
Bit
Bit
Bit
Bit
Bit

#wrd

olo] // Start of node pointer fields

#wrd o} // Node pointer to left child

// Node pointer to parent

bits of parent link are used as link and balance flags as follows:

1-0 ->
->
->
->
->
->

© © 06

1-
1-
1-
2
2

obxee () on when node right subtree is one deeper than left subtree
obxe1 (1) on when node right subtree and left subtree have equal depth
ebx1e (2) on when node left subtree is one deeper than right subtree
ebx11 INVALID - this is a state error

oboxx when parent link belongs to parent right child

obixx when parent link belongs to parent left child

Node address MUST BE 8 BYTE ALIGNED in order to use parent link 3 low bits !!!

// Node pointer to right child

soJoRIN ¥ Jordeyn

[I] ‘2804

Page: 112

When the same example is used without label the code generated is:

DWRD o[3] // Space for AVL tree node pointers

Chapter 4: Macros Page: 113
4.12.4 AVL.INSERT Macro
Macros AVL.INSERT inserts a node into an AVL tree.
Somtmmmmmmmoo +---+--AVL.INSERT----Anchor,---Node,---CompMacro,-------- >
I I
+--Label--+
D DuplLbl,---WReg----------------------- >
D e R e e e e PP R ><
I
+---,--FieldDispl=fieldDIsplacement---+
Label Optional
Name AVL.INSERT

Pos. Parameters

Anchor

Node

CompMacro

DuplLbl

WReg

Key-word Parameters

FieldDispl

It is the addressable anchor field of the AVL tree. If the address
of the anchor is in a register, say SO, parameter Anchor must
be coded as 0[So].

Register containing the address of the node to be pushed.

Name of a comparison macro, provided by the coder, used
by AVL.INSERT to check the sorted order of two nodes (see
below).

Label to branched to, if the node to be inserted is found to be
a duplicate.

List of either 8 work registers or 2 plus the number of work
registers used by the comparison macro, whichever list is
larger.

Displacement of the node pointers field within each node. It is
defaulted to zero.

Page: 114

The header of the comparison macro must follow this template:

//MACRO MacroName Nodea, Node2, GtLbl, EqLbl, WRegl[]

where

Node1 Register containing the address of the first node to be
compared.

Node1 Register containing the address of the second node to be
compared.

GtLbl Label to which the code generated by the macro will branch,
if the key of the first node is larger than the key of the second
node.

EqLbl Label to which the code generated by the macro will branch,

if the key of the first node is equal to the key of the second
node. This is the same label passed to the AVL.INSERT macro
as DuplLbl.

WReg List containing the work registers for the comparison macro.

Chapter 4: Macros Page: 115

In the following example a node is inserted in an AVL tree using 64 bit architecture:

//
// Anchor address is in register S2
// Node address is in register S3
// Tree 1link pointers are at the beginning of the node
//
// Comparison macro
//
#MACRO
//MACRO CompLong Nodea, Node2, GtLbl, EqLbl, WRegl[]

var WRego= WRegl[o];

var WRegi= WReg[1];
\#Label LD #WRego, nodeKey-node[#Node1] // Load data from node 1
\ LD #WReg1, nodeKey-node[#Node2] // Load data from node 2
\ BGT #WRego, #WRegi, #GtLbl // Branch GT label
\ BEQ #WRego, #WRegi, #EqLbl // Branch EQ label
H#END
//

AVL.INSERT o[S2], S3, ComplLong, duplKey, [te-6,a2]
//
// Code following insert
//
//
// Duplicate key handler code starts here
//
duplKey WRD oloe]
//
//
// Node mapping
//
node MMAP
AVL .NODE // Insert space for tree links

nodeKey DWRD © // Space for 64 bits key

!/

Page: 116

4.12.5 AVL.FIND Macro

Macros AVL.FIND finds a node in an AVL tree.

P T T +---+--AVL.FIND----Anchor, ---Node, ---Key, ---CompMacro, --->
l——Label——l
e NullLbl,---WReg----------------------- >
P e R R L L *mm-- ><
+-——,——FieldDisp1=fie1dDIsp1acement———l
Label Optional
Name AVL.FIND

Pos. Parameters

Anchor

Node

Key

CompMacro

NullLbl
WReg

Key-word Parameters

FieldDispl

It is the addressable anchor field of the AVL tree. If the address
of the anchor is in a register, say S0, parameter Anchor must
be coded as 0[So].

Register containing, upon completion, the address of the node
found.

Register containing the key, or the key address, used to search
the node.

Name of a comparison macro, provided by the coder, used by
AVL.FIND to search for the node (see below).

Label to be branched to, if no matching node is found.

List of either 1 work registers or the work registers used by
the comparison macro, whichever list is larger.

Displacement of the node list pointer field within each node. It
is defaulted to zero.

The key field by the AVL.FIND and the sort order must be the same as those used in the

ACL.INSERT macro.

Chapter 4: Macros Page: 117

The comparison macro must be coded to generate code that compare the key passed to the
AVL.FIND macro with a node key. The header of the comparison macro must follow this
template:

//MACRO MacroName Key, Node, GtLbl, EqLbl, WReg[]

Key This is the same Key parameter register passed to AVL.FIND
macro whose content is unchanged.

Node Register containing the address of a node.

GtLbl Label to which the code generated by the macro will branch if
the key identified by the key is greater than the key in Node.

EqLbl Label to which the code generated by the macro will branch if
the key is equal to the key in the node (i.e. a match has been
found).

WReg is a list containing the work registers needed by the

COl’I’lp&I‘iSOl’l macro.

Page: 118

In the following example an attempt is made to find a node using 64 bit architecture:

//
// Anchor address is in register S2
// Node address is returned in register S3
// Key is in register To
// Node address is in register Ta
// Tree link pointers are at the beginning of the node
//
// Comparison key-node macro
//
#MACRO
//MACRO CompKeyNode Key, Node, GtLbl, EqLbl, WReg[]
var WRego= WReg[o];
\#tLabel LD #WRego, nodeKey[#Node] // Load data from element 1
\ BGT #Key, #WRegoe, #GtLbl // Branch GT label
\ BEQ #Key, #WRego, #EqLbl // Branch EQ label
H#END
//
AVL.FIND o[S2], S3, Te, T1, CompkeyNode, notFound, [t1]
//
// Code handling found node - node is in register S2
//
//
// Node not found handler code starts here
//
notFound WRD olo]
//
//
// Node mapping
//
node MMAP
AVL.NODE // Insert space for tree links
nodeKey DWRD © // Space for 64 bits key

!/

Chapter 4: Macros Page: 119

4.12.6 AVL.REMOVE Macro

Macros AVL.REMOVE removes a node from an AVL tree.

So-t--------- +------ AVL.REMOVE---Anchor,---Node,---WReg--------------- >
l——Label——l
D e R +omm - ><
+———,——FieldDisp1=fie1dDIsp1acement———l
Label Optional
Name AVL.REMOVE

Pos. Parameters

Anchor It is the addressable anchor field of the AVL tree. If the address
of the anchor is in a register, say S0, parameter Anchor must
be coded as 0[So].

Node Register containing the address of the node to be removed.
WReg List containing 8 work registers.
Key-word Parameters

FieldDispl Displacement of the node list pointer field within each node. It
is defaulted to zero.

In the following example a node is removed from an AVL tree:

//

// Anchor address is in register S2

// Node address is in register T1

// Tree link pointers are at the beginning of the node
//

//

AVL.FIND o[S2], T1, [Ae-3, T1-4]
//

Page: 120

4.12.7 Tree Traversal Macros

Several macros are provided to traverse an AVL binary tree in in-order, inverse in-order,
pre-order and post-order. Inverse in-order traversal is used to traverse the tree in opposite
sorting order, as opposed to in-order which traverse the tree in sorted order.

The macros are divided into two groups. One set of macros are used to locate the first
node in the tree to start the traversal. Another set is provided to locate the next node in
the traversal.

The macros used to locate the first node in a traversals are (AVL.LOCFIRST), for in-order
traversal, AVL.LOCLAST for reverse in-order traversal, and AVL.LOCROOT for pre-order
and post-order traversals.

So—dmmmmmmo - +---+--AVL.LOCROOT---+--Anchor,---Node, ---NullLbl,------- >
I I I
+--Label--+ +--AVL.LOCLAST---+
I I
+--AVL.LOCLAST---+

P LT WREG---#-—— oo oo +o—- - ><
I I
+---,--FieldDispl=fieldDIsplacement---+
Label Optional
Name AVL.LOCROOT

AVL.LOCFIRST
AVL.LOCLAST

Pos. Parameters
Anchor It is the addressable anchor field of the AVL tree. If the address

of the anchor is in a register, say S0, parameter Anchor must
be coded as o[Se].

Node Register containing the address of the node to be located.
Node Label to be branched to, if the tree is empty.
WReg Work register.

Key-word Parameters

FieldDispl Displacement of the node list pointer field within each node. It
is defaulted to zero.

Chapter 4: Macros Page: 121

The macros used to locate the next node in a traversals are AVL.LOCNEXT, for in-order
traversal, AVL.LOCPREV for reverse in-order traversal, AVL.LOCPRENEXT for pre-order
traversal and AVL.LOCPOSTNEXT for post-order traversal.

D #==-+--AVL.LOCNEXT-----~ +---Node,---NullLbl,------------- >

| | |
+--Label--+ +--AVL.LOCPREV------ .

| I
+--AVL.LOCPRENEXT---+

| |
+--AVL.LOCPOSTNEXT--+

D e T T WREG---#=-=— oo oo R ><
| |
+---,--FieldDispl=fieldDIsplacement---+

Label Optional
Name AVL.LOCNEXT
AVL.PREV

AVL.LOCPRENEXT
AVL.LOCPOSTNEXT

Pos. Parameters

Node Register containing the address of the node to be located.
Node Label to be branched to, if there are no more nodes to traverse.
WReg Work register.

Key-word Parameters

FieldDispl Displacement of the node list pointer field within each node. It
is defaulted to zero.

Page: 122

In the following example an AVL tree is traversed in reverse in-order:

//
//
//
//
//
//

//

//
Done

//

Anchor address is in register S2
Node address is in register T1
Tree link pointers are at the beginning of the node

AVL.LOCLAST [S2], T1, Done, T2

WHILE // Unconditional loop
AVL.LOCPREV T1, Done, T2
ENDWHILE
WRD oloe] // Code after traversal starts here

Chapter 4: Macros Page: 123

4.12.8 AVL.FREEALL Macro

Macro AVL.FREEALL is used to free all nodes in an AVL tree.

P +----AVL.FREEALL----Anchor,---FreeMacro, ---WReg---------- >
l——Label——l
e e et +o—- - ><
+———,——FieldDisp1=fie1dDIsp1acement———l
Label Optional
Name AVL.FREEALL

Pos. Parameters

Anchor It is the addressable anchor field of the AVL tree. If the address
of the anchor is in a register, say S0, parameter Anchor must
be coded as 0[So].

FreeMacro Name of a free macro, provided by the coder, used by
AVL.FIND to dispose of the node being freed (see below).

WReg List of 2 work registers plus the registers used by the free
macro.

Key-word Parameters

FieldDispl Displacement of the node list pointer field within each node. It
is defaulted to zero.

The free macro is used to dispose of each node right after it has been removed from the
tree. The header of this macro must follow this template:

//MACRO MacroName Node, WRegl]
where
Node Register containing the address of the node just removed from
the tree.

WReg List containing the work registers for the FreeMacro macro.

Page: 124

In the following example all nodes in an AVL tree are removed and added to a stack for
later reuse:

//
// Anchor address is in register S2
// Tree link pointers are at the beginning of the node
//
H#MACRO
//MACRO FreeNode Node, WRegl]
var wreg= WRegl[o];
\#Label SLL.PUSH stackAnch, #Node, #wreg // Push node in stack
H#END
//

AVL.FREEALL o[S2], FreeNode, [T2-4]
//

Chapter 4: Macros Page: 125

4.13 Hash Macros

DVASM™ RISC-V module provides hashing macros. The hashing function
used by this macros is the Multiplicative Hashing function as described in
https://enwikipedia.org/wiki/Hash_function#Multiplicative_hashing.

The algorithm used is very efficient, since it uses only one multiplication, but requires
that both the hash vector size and the size of the cells forming the vector to be power of
twos.

4.13.1 HASH.ANCHOR Macro

The HAHS.INIT map the hash vector anchor.

>mmtmmmmm e $mmmmm HASH . INIT == === === === == s o o o e e e e ><
| |
+--Label--+
Label Optional
Name HASH.ANCHOR

Pos. Parameters
None
Key-word Parameters

None

Every hashing macro that generates code to hash a word, double word, buffer or string
need access to a control area called anchor. The HASH.ANCHOR macro maps this control
area, which contains the hashing vector address, the prime number used for hashing, and
the left and right shifts values used during hashing. Macro HASH.ANCHOR does not have
any parameters, and the label is optional. When a label is not specified a memory buffer,
sized to contain the anchor, is defined. Otherwise each anchor field is defined, by prefixing
the label value to the field name, separated by a dot (.”).

https://en.wikipedia.org/wiki/Hash_function#Multiplicative_hashing

Page: 126

In the following example macro ANCHOR.ANCHOR is used with a label in 64 bits
architecture: for a hash anchor:

myAnachor HASH . ANCHOR // Anchor for STLL list

The code generated is:

myAnachor DWRD olo] // Start of hash anchor
myAnachor.vaddr DWRD o} // Address of hash vector
myAnachor.prime DWRD 0 // Prime number used for hashing
myAnachor.keyshit WRD [0 // Key shift

myAnachor.cellshift WRD o} // Cell shift

The same macro used without label generates the following code:

myAnachor DWRD o[3] // Hash anchor

Chapter 4: Macros Page: 127

HASH.INIT Macro

Macro HASH.INIT initialize the hash anchor area.

P +----- HASH.INIT------ Anchor,---Vector,---VectSizeExp,---->
I I
+--Label--+
D s CellSizeExp,---WReg------------------ ><
Label Optional
Name HASH.INIT

Pos. Parameters

Anchor It is the addressable hash anchor field. If the address of the
anchor is in a register, say S0, parameter Anchor must be
coded as 0[So].

Vector Register containing the address of the hash vector.

VectSizeExp Register containing the exponent, base 2, of the number of
cells within the hash vector.

CellSizeExp Register containing the exponent, base 2, of the size, in bytes,
of each cell in the hashing vector.

WReg List containing two work registers.
Key-word Parameters

None

Before use, the hash anchor area needs to be initialized using the HASH.INIT macro.

The macro HASH.INIT randomly selects a prime number out of a list of 128 prime numbers.
To select the prime number, the code generated uses the lowest 7 bits returned by the
machine instruction RDCYCLE, which returns the number of CPU cycles since power up.
This index is used to select the prime from a list of pre-defined primes, that the macro
stores in the literal pool. For this reason the LITERAL directive must be added at the end
of the code, and addressability must be established to it using the BASEDEF directive. For
example, the base register parameter of the ENTRY macro could be used (see page [55).

The random selection of a prime at execution time, is intended as a partial protection from

Page: 128

denial of service attacks when the data being hashed is received through the internet
However, even though the selection is random, the list of primes used for selection is
pre-defined and a determined attacker could target each prime in 128 separate attacks to
create a very high number of collisions when the the prime selected for hashing is used by
the attacker. For this reason, for absolute protection, each cell in the hash vector should
be the root of an AVL tree, which would defeat any attack with minimal overhead.

In the following example macro HASH.INIT is used to initialize a hash table anchor:

//

// Anchor addr is in register Si

// Hash vector addr is in register S2

// Hash vector size exponent is in registers S3

// Hash vector cell size exponent is in registers Sy

//
// Addressability has been established to the literal pool
//
HASH.INIT o[S1], S2, S3, S4, [Te, T1]
//
// Add the literal pool at the end of the code
//

LITERALS
//

Chapter 4: Macros Page: 129

4.13.2 HASH Macro

Macro HASH is used to hash a word in 32 bit architecture and a double word in 64 bit
architecture.

P +----- HASH----Anchor,---Key,---WReg---------------------- >
| |
+--Label--+
Label Optional
Name HASH

Pos. Parameters

Anchor It is the addressable hash anchor field. If the address of the
anchor is in a register, say SO, parameter Anchor must be
coded as 0[So].

Key Register containing, on input, the value to be hashed, and, on
output, the corresponding hash table cell address

WReg List containing two work registers.
Key-word Parameters

None

In the following example a key is hashed into a has table cell address in 64 bit
architecture:

//

// Anchor address is in register S2
// Key address is in register S3

//

HASH o[S2], S31, [te-1]
//

Page: 130

4.13.3 HASH.BUFFER Macro

Macro HASH.BUFFER is used to hash a key in a buffer with no length limitations.

Somd—mmmmmmmo +-—--- HASH.BUFFER----Anchor,---Buffer,---Length,-------- ><
I I
+--Label--+
> HashAddr,---WReg---------------------——- >
Label Optional
Name HASH.BUFFER

Pos. Parameters

Anchor

Buffer
Length

HashAddr

WReg

Key-word Parameters

None

It is the addressable hash anchor field. If the address of the
anchor is in a register, say S0, parameter Anchor must be
coded as 0[So].

Register containing the address of the buffer to be hashed.

Register containing the length, in bytes, of the buffer to be
hashed.

Output register that, upon completion, contains the computed
hash table cell address

List containing two work registers.

In the following example a key in a buffer is hashed into a hash table cell address:

//
//
//
//
//
//

//

Anchor address is in register S2
Buffer address is in register S3
Buffer length is in register Si
Hash address is returned in register T3

HASH

0[52], 531 SLH T3y [TO—2]

Chapter 4: Macros

Page: 131

4.13.4 HASH.STRING Macro

Macro HASH.STRING hashes a C string (i.e null terminated) with no length limitations.

Soctmmooooo- 4ommo- HASH.STRING----Anchor, ---String,------------------ ><
I I
+--Label--+
> HashAddr,---WReg---------------------——- >
Label Optional
Name HASH.STRING

Pos. Parameters

Anchor

String
HashAddr

WReg
Key-word Parameters

None

It is the addressable hash anchor field. If the address of the
anchor is in a register, say S0, parameter Anchor must be
coded as 0[So].

Register containing the address of the string to be hashed.

Output register that, upon completion, contains the computed
hash table cell address.

List containing three work registers.

In the following example a key in a buffer is hashed into a hash table cell address:

//

// Anchor address is in register S2

// String address is in register S3

// Hash address is returned in register T3
!/

HASH

//

o[S2], S3, T3, [Te-2]

Page: 132

4.14 Miscellaneous Macros

4.14.1 PRINTF Macro

The PRINTF macro provide an interface to the C printf function available in Linux and
in Unix. It uses the macro CALL.GOT to call function printf.

So-t--------- +----- PRINTF----Format,---Arg,---SaveReg,---------------- >
I I
+--Label--+
Dy SaveFReg,---Stack---------------------- ><
Label Optional
Name PRINTF

Pos. Parameters
Format Printf format string enclosed in double quotes (see below).

Arg List containing the parameters to the printf function that
follows the format string. It must be coded as documented by
the CALL.* macros (see page [37).

SaveReg List of registers that must be save/restored before/after the call
to printf. Must be coded as documented by the CALL.* macros
(see page [37).

SaveFReg List of floating point registers that must be save/restored

before/after the call to printf. Must be coded as documented
by the CALL.* macros (see page [37).

Stack Label referencing the current stack.
Key-word Parameters

None

Macro printf uses the macro CALL.GOT to call function printf. Parameter Format
is the printf format string enclosed in double quotes and null terminated. The string
is stored in the literal pool which must be addressable from the code generated by the
macro. For this reason the LITERAL directive must be added at the end of the code, and
addressability must be established to it using the BASEDEF directive. For example, the

Chapter 4: Macros Page: 133

base register parameter of the ENTRY macro could be used (see page [55).

In the following example two registers S2 and S3 are printed to stdout in hexadecimal
format:

//

//

//

PRINTF />

"Register S2 -> %016X\nRegister S3 -> %e016X\ueeee", />
Arg=[o[S2], o[S3]], SaveReg=[Te-3], Stack= myStack

//

// Following code here

//

LITERALS // Literal pool at end of code
//

Page: 134

4.14.2 Spin Lock Macros

Two macros are provided to acquire and release a spin lock, using AMOSWAP.*.AQ and
AMOSWAP. = .RL. These macros use words and double words lockwords depending on the
architecture being 32 bit or 64 bits.

Spin locks should be used with the CPU in disabled state, to avoid performance degradation.
If the lock is shared from both mainline code and disable interrupt code, than the lock
must be acquired and held only in disable stated to avoid deadlocks.

Macro LOCK.GET gets a spin lock.

So-do-------- +o—--- LOCK.GET----- LockAddr,---WReg--------------------- ><
I I
+--Label--+
Label Optional
Name LOCK.GET

Pos. Parameters

LockAddr Register containing the lock word or double word address,
depending if the architecture is 32 or 64 bits.

WReg Work register.
Key-word Parameters

None

Chapter 4: Macros Page: 135

Macro LOCK. FREE release a spin lock.

PSR mmmmm LOCK. FREE----LOCKAAdr-=-====== === coo oo ><
| |
+--Label--+

Label Optional

Name LOCK. FREE

Pos. Parameters

LockAddr Register containing the lock word or double word address,
depending if the architecture is 32 or 64 bits.

Key-word Parameters

None

In this example a lock is acquired and released:

//
// Register S2 contains the address of the lock word
// CPU is disabled for interrupts

//
LOCK.GET S2, T1 // Get spin lock
//
// Code executing in locked mode here
//
LOC. FREE S2 // Release spin lock

//

Page: 136

4.14.3 Load Immediate 32 Bit Constant Macro

Macro LI32 load a 32 bit constant with two machine instruction.

So-t--------- +-—--- LI32----Reg,---Value---------------------~-—-----~--- ><
| |
+--Label--+
Label Optional
Name LI32

Pos. Parameters
Reg Destination register.

Value Expression which resolve to an integer of not more than 32
significant bits.

Key-word Parameters

None

This is an example on how to use macro LI32:

LI32 S2, 0x123ABC99 // Load a 32 bit immediate

	Overview
	Introduction
	Implementation

	Coding RISC-V Programs
	SETENV Directive
	Memory Access
	Register to Register Machine Instructions
	The Floating Point Extensions
	The C Extension
	The ALIGN Opcode
	Linkage Support Opcodes
	Register Save Areas
	Load and Store Conditional Opcodes
	Clearing the Update Flag for all registers

	Checking for Branch to Branch Condition

	Macros
	The DVASM.getenv Function
	Macro Classification
	Macros Defined in the RISC-V Specifications.
	Definition Macros
	Control Flow Macros
	Branch Condition
	IF and IF Related Macros
	WHILE and ENDWHILE macros
	BREAK and CONTINUE Macros
	DO and ENDDO Macros
	Fixing Branch to Branch

	Linkage Assist Macros
	Common Parameters
	CALL.FAR Macro
	CALL.NEAR Macro
	CALL.LCL Macro
	CALL.GOT Macro
	CALL.PRIME and CALL.FAST Macros
	CALL.REG Macro
	TAIL.FAR Macro
	TAIL.NEAR Macro
	TAIL.LCL Macro
	TAIL.GOT Macro
	ENTRY Macro
	EXIT Macro
	STACK and ENDSTACK macros

	External Symbols Access Macros
	LA.FAR Macro
	LA.GOT Macro
	LB.FAR Macro
	LH.FAR Macros
	LW.FAR Macro
	LD.FAR Macro
	SB.FAR Macro
	SH.FAR Macro
	SW.FAR Macro
	SD.FAR Macro

	Buffer Handling Macros
	BUFFER.LDPADREG Macro
	BUFFER.SET Macro
	BUFFER.COPY Macro
	BUFFER.COPYPAD Macro
	BUFFER.COMP Macro
	BUFFER.COMPPAD Macro

	String Handling Macros
	STRING.CLEAR Macro
	STRING.COMP Macro
	STRING.CONCAT Macro
	STRING.COPY Macro
	STRING.LENGTH Macro

	HEAPSORT Macro
	Linked List Macros
	Anchor Mapping Macros
	Anchor Initialization Macros
	Node Mapping Macros
	Push Macros
	Pop Macros
	Tailpush Macros
	CDLL.TAILPOP Macro
	Find Macros
	CDLL.REMOVE Macro

	AVL Tree Macros
	AVL.ANCHOR Macro
	AVL.INIT Macro
	AVL.NODE Macro
	AVL.INSERT Macro
	AVL.FIND Macro
	AVL.REMOVE Macro
	Tree Traversal Macros
	AVL.FREEALL Macro

	Hash Macros
	HASH.ANCHOR Macro
	HASH Macro
	HASH.BUFFER Macro
	HASH.STRING Macro

	Miscellaneous Macros
	PRINTF Macro
	Spin Lock Macros
	Load Immediate 32 Bit Constant Macro

